{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fb824620440>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2100000, "_total_timesteps": 2100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682683847793086610, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAADdwMT9PhHq/s2UWvlq40T9H9+S/YbuuP01QJL8Asii/qoQyv/g45z/x60M/R3AEP1hMxz6TDBZAgkgQPwffKr16sJU/T+QOv1DHpb/jE0m+utaFP0Ce2LuuNgM/miiPvS39BD+URDXAFybrPizror/P3BE+vLypPe2UFj8Fs+c+1LyEv4W9+j3CCwy/EhXxvNYvTz+OAHy/JwoXv2t22r7HkSQ/ecSDv6ycST4z2JM/7M8aPkV8QT/iTf++AJAdvmsIhj+NDFk8MycOP6xlJD8t/QQ/aMW0Phcm6z4s66K/ahtAP1WaEb/SwYY+8X7rvmZ98zu/f2fAzO8Wvo6PaT85BMe/NKpSwNamS7+lErK76IjXv9ZQPcBM3Dq/itIywG+DYL5TMCRA0JUfvx9Ymj9U64A//TYXwJ/TYj5VuIQ+eGX2v2jFtD6dWQvALOuiv4/lkz49gCQ/DI4iP5ULrz+WArK+O6PePtXTO76NFoi/Yb46P4vuwT9L5oM+XFiPvqPYqT9lbEi+ey4QP3CDJ0DeYrk/e+3+vtNUtr7jGhK+F3WEP6GVNL8duBe+NWsJvy39BD9oxbQ+FybrPizror+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABwVZc2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA3Qo2vQAAAADCPt+/AAAAAFsZdT0AAAAA2wvpPwAAAADqsMS8AAAAAH6o/D8AAAAAYRkCvgAAAAASF+e/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqUwUtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgIXfErwAAAAA2nP9vwAAAAB27O49AAAAABB2/D8AAAAABwHivQAAAADWpeM/AAAAAJok5j0AAAAAT0PmvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAH06ITYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDj+Uy8AAAAAJUK/b8AAAAAEK4fPQAAAADELe4/AAAAAEXAlT0AAAAA+NnZPwAAAADMXVc8AAAAAGsd/b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADxAic2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA7VdpvQAAAABFUPi/AAAAAAGKgD0AAAAAAH3wPwAAAADLpgm9AAAAAGE87T8AAAAAJGLCvAAAAABSzfS/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQI2XUQK8cuKMAWyUTegDjAF0lEdAtzd0gEEDAHV9lChoBkdAksw7S3LFGWgHTegDaAhHQLc5w0cfeUJ1fZQoaAZHQJANssnRb8poB03oA2gIR0C3PKiiZfD2dX2UKGgGR0CRGjM6ij+KaAdN6ANoCEdAtz2yOGTLXHV9lChoBkdAjh5Vm8M/hWgHTegDaAhHQLc/5Gzru6V1fZQoaAZHQJLhjdBSk0toB03oA2gIR0C3QilanrIHdX2UKGgGR0COD9GkvboKaAdN6ANoCEdAt0Q4e2d/a3V9lChoBkdAhnXvXsgMdGgHTegDaAhHQLdE3EG7jDN1fZQoaAZHQIiXWw1R+BpoB03oA2gIR0C3RlYWDYh/dX2UKGgGR0CJuSYbbUPQaAdN6ANoCEdAt0iwy/KyOnV9lChoBkdAkXR6XfIjnmgHTegDaAhHQLdLWeqJdjZ1fZQoaAZHQJHfRw97ngZoB03oA2gIR0C3TFL4agmJdX2UKGgGR0CKq47K7qY7aAdN6ANoCEdAt067zCk43nV9lChoBkdAhVSf5DZ13mgHTegDaAhHQLdRQQMx46h1fZQoaAZHQIdorhcZ9/loB03oA2gIR0C3U0/WtlqbdX2UKGgGR0CF4fNPgvUSaAdN6ANoCEdAt1P1+so2GnV9lChoBkdAeSci7TUiIWgHTegDaAhHQLdVcPXCj1x1fZQoaAZHQI6Rdvl2eQNoB03oA2gIR0C3V8ESyt3fdX2UKGgGR0B7J3fuTibVaAdN6ANoCEdAt1or/GVAzHV9lChoBkdAg7YnbZezEGgHTegDaAhHQLdbI1SOzY51fZQoaAZHQH3++sDGLk1oB03oA2gIR0C3XXVz2exwdX2UKGgGR0CDO1IClrM1aAdN6ANoCEdAt2BYWLxZuHV9lChoBkdAg3OAiV0LdGgHTegDaAhHQLdiYaX8fmt1fZQoaAZHQIgn2hEjPfNoB03oA2gIR0C3Yw5yMkyDdX2UKGgGR0B8vIuK4x1xaAdN6ANoCEdAt2SeZgG8mXV9lChoBkdAgtnEbYK6WmgHTegDaAhHQLdm5iRnvlV1fZQoaAZHQIN1OPzWf9RoB03oA2gIR0C3aRX+2mYTdX2UKGgGR0COzBAFgUlBaAdN6ANoCEdAt2oF4xDb8HV9lChoBkdAhzJJgCwKSmgHTegDaAhHQLdsQfUnXup1fZQoaAZHQITQ7x5LRKJoB03oA2gIR0C3b0wYYR/WdX2UKGgGR0CP60v2Xb/PaAdN6ANoCEdAt3FNl2/zrnV9lChoBkdAj6z+YUnG82gHTegDaAhHQLdx9JqIrOJ1fZQoaAZHQIkxj6LwWnFoB03oA2gIR0C3c2du+AVgdX2UKGgGR0CRrf0AcT8HaAdN6ANoCEdAt3W4SteUp3V9lChoBkdAhTjCR4hUzmgHTegDaAhHQLd3wTKT0QN1fZQoaAZHQIahDWiDdxhoB03oA2gIR0C3eGzjFQ2udX2UKGgGR0CIHGBV+7UYaAdN6ANoCEdAt3qgoc7yQXV9lChoBkdAeYA+vhZQpGgHTVYBaAhHQLd6xtx+8Xh1fZQoaAZHQI4Zece8wpRoB03oA2gIR0C3finG4qgAdX2UKGgGR0CQE+akAPupaAdN6ANoCEdAt4Du2TgVGnV9lChoBkdAk/AYJ/oaDWgHTegDaAhHQLeCWjASFoN1fZQoaAZHQJIMIWgvlEJoB03oA2gIR0C3gnKYAsCldX2UKGgGR0CKi9QLNOdoaAdN6ANoCEdAt4SknCwbEXV9lChoBkdAjtOTCLuQZGgHTegDaAhHQLeHW2+fywx1fZQoaAZHQI/SDjaPCEZoB03oA2gIR0C3iTZGrjo7dX2UKGgGR0CL5reVs1sMaAdN6ANoCEdAt4lZschkiHV9lChoBkdAi7WhL5AQhGgHTegDaAhHQLeM3jSXt0F1fZQoaAZHQJHIV6MR6GBoB03oA2gIR0C3j8uKwY+CdX2UKGgGR0CRzEpCKJl8aAdN6ANoCEdAt5FFIPK+z3V9lChoBkdAkJ3ikKu0TmgHTegDaAhHQLeRXfZmI0t1fZQoaAZHQJFHVSWJJoVoB03oA2gIR0C3k4ZF1B+ndX2UKGgGR0CQEn6VMVUNaAdN6ANoCEdAt5ZEgvDgqHV9lChoBkdAgaXnmig00mgHTegDaAhHQLeXy/KyOaR1fZQoaAZHQIUKXgFX7tRoB03oA2gIR0C3l/D2JzkqdX2UKGgGR0COlL3VTaTPaAdN6ANoCEdAt5s5uYQarHV9lChoBkdAkE2jeGfwqmgHTegDaAhHQLeefwSrYGt1fZQoaAZHQJGiEj/uLJloB03oA2gIR0C3n/9DlYEGdX2UKGgGR0CQrFqM3qA0aAdN6ANoCEdAt6AX5j6N2nV9lChoBkdAj55+nqFAV2gHTegDaAhHQLeiQvfTCtR1fZQoaAZHQJGtrQTmGM5oB03oA2gIR0C3pOdYB/7SdX2UKGgGR0CRxuiRW912aAdN6ANoCEdAt6ZnJp35e3V9lChoBkdAkNuDc6/7BWgHTegDaAhHQLemfol2Ned1fZQoaAZHQI7Fjs0HhS9oB03oA2gIR0C3qWrHyVfNdX2UKGgGR0CLGhulXRw7aAdN6ANoCEdAt603f/FR53V9lChoBkdAkj3BTS9dvGgHTegDaAhHQLeuqgTyrgh1fZQoaAZHQJCiUlv60ppoB03oA2gIR0C3rsJlnRLLdX2UKGgGR0CR2GB1cMVlaAdN6ANoCEdAt7DuTA31jHV9lChoBkdAlIUhtpEhJWgHTegDaAhHQLezltKZlWh1fZQoaAZHQJGSDJIUahpoB03oA2gIR0C3tRPvrnkldX2UKGgGR0CUSOoJiRW+aAdN6ANoCEdAt7Ut+uvECXV9lChoBkdAkSCOJgsshGgHTegDaAhHQLe35c6/7BR1fZQoaAZHQJZYRsnAqNJoB03oA2gIR0C3vAhbGFSLdX2UKGgGR0CWSoXY150KaAdN6ANoCEdAt718KUmlZXV9lChoBkdAlVeCGSIP9WgHTegDaAhHQLe9ltygf2d1fZQoaAZHQJPboZFXq7loB03oA2gIR0C3v72nXNC7dX2UKGgGR0CTLeRPGhmHaAdN6ANoCEdAt8JvKwIMSnV9lChoBkdAk2EMdxQzlGgHTegDaAhHQLfD7YywfQt1fZQoaAZHQJVNgPy08eVoB03oA2gIR0C3xAXyNGVidX2UKGgGR0B3xSTq0MPSaAdNOwFoCEdAt8Yd/jKgZnV9lChoBkdAkmJdK/VRUGgHTegDaAhHQLfGW58Sf191fZQoaAZHQJBZ2j/MnqpoB03oA2gIR0C3ymjp5eJIdX2UKGgGR0CUfK17pmmMaAdN6ANoCEdAt8xIkSmIkHV9lChoBkdAlpvXs1KoRGgHTegDaAhHQLfOWo3aSLZ1fZQoaAZHQJenDRplBhRoB03oA2gIR0C3zoPNA1NydX2UKGgGR0CYGBCOmzjWaAdN6ANoCEdAt9E6jcmBv3V9lChoBkdAko0cXJo0ymgHTegDaAhHQLfSqPSUkfN1fZQoaAZHQJOn91oxpL5oB03oA2gIR0C31MgfEGaAdX2UKGgGR0CYgcLDQ7cPaAdN6ANoCEdAt9TzP2PDHnV9lChoBkdAlF8at1ZDA2gHTegDaAhHQLfYphGYrrh1fZQoaAZHQJXBs43m3fBoB03oA2gIR0C32vBri2lVdX2UKGgGR0CU8VAc1fmcaAdN6ANoCEdAt90Sd6LOzXV9lChoBkdAlxxAd8zAOGgHTegDaAhHQLfdPbVSXMR1fZQoaAZHQJZEq2iL2pRoB03oA2gIR0C33+HYDklvdX2UKGgGR0CVS2MfA9FGaAdN6ANoCEdAt+FR2LYPG3V9lChoBkdAlbRsFhXr+2gHTegDaAhHQLfjgSBbwBp1fZQoaAZHQJeA8ezUqhFoB03oA2gIR0C347KePJaJdX2UKGgGR0CVNO0g8r7PaAdN6ANoCEdAt+cFgBtDUnV9lChoBkdAluN5TAFgUmgHTegDaAhHQLfpOpwS8J51fZQoaAZHQJilQOBlMAZoB03oA2gIR0C3687rcCYDdX2UKGgGR0CV9BiyIHkcaAdN6ANoCEdAt+v8WFev6nVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 65625, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}