--- license: apache-2.0 base_model: facebook/wav2vec2-large-robust-ft-libri-960h tags: - generated_from_trainer metrics: - accuracy model-index: - name: wav2vec2-large-robust-ft-libri-960h-finetuned-ravdess-v3 results: [] --- # wav2vec2-large-robust-ft-libri-960h-finetuned-ravdess-v3 This model is a fine-tuned version of [facebook/wav2vec2-large-robust-ft-libri-960h](https://huggingface.co/facebook/wav2vec2-large-robust-ft-libri-960h) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9736 - Accuracy: 0.6354 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.0795 | 1.0 | 18 | 2.0783 | 0.1007 | | 2.0703 | 2.0 | 36 | 2.0743 | 0.1181 | | 2.062 | 3.0 | 54 | 2.0632 | 0.1597 | | 2.0444 | 4.0 | 72 | 2.0439 | 0.1910 | | 2.0031 | 5.0 | 90 | 1.9762 | 0.2778 | | 1.9632 | 6.0 | 108 | 1.8421 | 0.3576 | | 1.8249 | 7.0 | 126 | 1.7072 | 0.3889 | | 1.6733 | 8.0 | 144 | 1.5729 | 0.3819 | | 1.5452 | 9.0 | 162 | 1.4826 | 0.4201 | | 1.4479 | 10.0 | 180 | 1.4214 | 0.4236 | | 1.443 | 11.0 | 198 | 1.3441 | 0.4340 | | 1.3341 | 12.0 | 216 | 1.3241 | 0.5 | | 1.2697 | 13.0 | 234 | 1.2810 | 0.5069 | | 1.2348 | 14.0 | 252 | 1.2349 | 0.5069 | | 1.1785 | 15.0 | 270 | 1.1948 | 0.5208 | | 1.1687 | 16.0 | 288 | 1.1831 | 0.5451 | | 1.1168 | 17.0 | 306 | 1.1481 | 0.5764 | | 1.0975 | 18.0 | 324 | 1.1342 | 0.5764 | | 1.0491 | 19.0 | 342 | 1.1138 | 0.6146 | | 1.033 | 20.0 | 360 | 1.0800 | 0.6146 | | 1.0523 | 21.0 | 378 | 1.0678 | 0.6146 | | 1.0136 | 22.0 | 396 | 1.0472 | 0.6111 | | 0.9777 | 23.0 | 414 | 1.0175 | 0.6111 | | 1.0007 | 24.0 | 432 | 1.0703 | 0.6215 | | 0.9584 | 25.0 | 450 | 0.9935 | 0.6181 | | 0.9102 | 26.0 | 468 | 0.9736 | 0.6354 | | 0.9101 | 27.0 | 486 | 0.9758 | 0.6285 | | 0.9405 | 28.0 | 504 | 0.9659 | 0.6319 | | 0.9366 | 29.0 | 522 | 0.9719 | 0.625 | | 0.9498 | 30.0 | 540 | 0.9713 | 0.6215 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3