--- language: en license: cc-by-4.0 tags: - automatic-speech-recognition - nemo - conformer - entity_tagging - intent datasets: - slurp metrics: - wer - cer model-index: - name: 1step ASR-NL for Slurp dataset results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Slurp dataset type: slurp metrics: - name: Word Error Rate type: wer value: - Insert WER Value - name: Character Error Rate type: cer value: - Insert CER Value --- # This speech tagger performs transcription, annotates entities, predict intent for SLURP dataset Model is suitable for voiceAI applications. ## Model Details - **Model type**: NeMo ASR - **Architecture**: Conformer CTC - **Language**: English - **Training data**: Slurp dataset - **Performance metrics**: [Metrics] ## Usage To use this model, you need to install the NeMo library: ```bash pip install nemo_toolkit ``` ### How to run ```python import nemo.collections.asr as nemo_asr # Step 1: Load the ASR model from Hugging Face model_name = 'WhissleAI/speech-tagger_en_slurp-iot' asr_model = nemo_asr.models.EncDecCTCModel.from_pretrained(model_name) # Step 2: Provide the path to your audio file audio_file_path = '/path/to/your/audio_file.wav' # Step 3: Transcribe the audio transcription = asr_model.transcribe(paths2audio_files=[audio_file_path]) print(f'Transcription: {transcription[0]}') ```