--- library_name: transformers datasets: - WebOrganizer/Corpus-200B --- # WebOrganizer/LM-1b_1x-Sampling_over_KMeans_for_MMLU [[Paper](https://arxiv.org/abs/2502.10341)] [[Website](https://weborganizer.allenai.org)] [[GitHub](https://github.com/CodeCreator/WebOrganizer)] A 1.4B parameter model trained for 29B tokens from [WebOrganizer/Corpus-200B](https://huggingface.co/datasets/WebOrganizer/Corpus-200B). The training data for this model was selected via: 1. **Selection method**: Random sampling 2. **Domain definition**: 24 KMeans Clusters 3. **Domain mixture**: MMLU ## Repository Contents Besides the HuggingFace model and tokenizer, the repository contains: - `open_lm/`: Contains the OpenLM config and final checkpoint - `evals/`: Evaluation results for various benchmarks - `core_9mcqa/`: Results of 9 multiple choice QA tasks with the OLMES evaluation framework - `mmlu/`: MMLU results with the OLMES evaluation framework - `dclm/`: Results using the DCLM evaluation framework - `perplexity/`: Perplexity results using the huggingface trainer - `indices.tar.zst`: The indices for the selected documents in each shard of the Corpus-200B dataset used for training. The indices can be extracted with `tar --use-compress-program "zstd" -xf indices.tar.zst`. ## Usage To use this model, you need to install the [open_lm](https://github.com/mlfoundations/open_lm) library and add `from open_lm.hf import *` before loading the model with `AutoModel.from_pretrained(...)`. ## Citation ```bibtex @article{wettig2025organize, title={Organize the Web: Constructing Domains Enhances Pre-Training Data Curation}, author={Alexander Wettig and Kyle Lo and Sewon Min and Hannaneh Hajishirzi and Danqi Chen and Luca Soldaini}, journal={arXiv preprint arXiv:2502.10341}, year={2025} } ```