File size: 6,102 Bytes
4839ed5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
# -*- coding: utf-8 -*-
import re
from snowballstemmer import stemmer
import arabicstopwords.arabicstopwords as stp
from tqdm import tqdm
import pandas as pd
import arabicstopwords.arabicstopwords as ar_stp
from nltk.corpus import stopwords
from nltk.tokenize import sent_tokenize, word_tokenize
from snowballstemmer import stemmer
from nltk.stem import PorterStemmer
import string
import logging
import global_variables as gb
ar_stemmer = stemmer("arabic")
porter= PorterStemmer()
# read file based on its extension (tsv or xlsx)
def read_file(input_file, sep="\t", names = ""):
if input_file.endswith(".xlsx"):
df = pd.read_excel(input_file)
else:
if names != "":
df = pd.read_csv(input_file, sep=sep, names=names,encoding="utf-8")
else:
df = pd.read_csv(input_file, sep=sep,encoding="utf-8")
return df
def remove_punctuation(text):
# Removing punctuations in string using regex
text = re.sub(r'[^\w\s]', '', text)
return text
#a function to normalize the tweets
def normalize_arabic(text):
text = re.sub("[إأٱآا]", "ا", text)
text = re.sub("ى", "ي", text)
text = re.sub("ؤ", "ء", text)
text = re.sub("ئ", "ء", text)
text = re.sub("ة", "ه", text)
return(text)
def remove_punctuations_tashkeel(text):
"""
The input should be arabic string
"""
punctuations = """`÷×؛<>_()*&^%][ـ،/:"؟.,'{}~¦+|!”…“–ـ""" + string.punctuation
arabic_diacritics = re.compile(
"""
ّ | # Shadda
َ | # Fatha
ً | # Tanwin Fath
ُ | # Damma
ٌ | # Tanwin Damm
ِ | # Kasra
ٍ | # Tanwin Kasr
ْ | # Sukun
ـ # Tatwil/Kashida
""",
re.VERBOSE,
)
# remove_punctuations
translator = str.maketrans("", "", punctuations)
text = text.translate(translator)
# remove Tashkeel
text = re.sub(arabic_diacritics, "", text)
return text
def remove_longation(text):
# remove longation
text = re.sub("[إأآا]", "ا", text)
text = re.sub("ى", "ي", text)
text = re.sub("ؤ", "ء", text)
text = re.sub("ئ", "ء", text)
text = re.sub("ة", "ه", text)
text = re.sub("گ", "ك", text)
return text
def remove_harakaat(text):
# harakaat and tatweel (kashida) to remove
accents = re.compile(r"[\u064b-\u0652\u0640]")
# Keep only Arabic letters/do not remove number
arabic_punc = re.compile(r"[\u0621-\u063A\u0641-\u064A\d+]+")
text = " ".join(arabic_punc.findall(accents.sub("", text)))
text = text.strip()
return text
#removing stop sords function
def ar_remove_stop_words(sentence):
terms=[]
stopWords= set(ar_stp.stopwords_list())
for term in sentence.split() :
if term not in stopWords :
terms.append(term)
return " ".join(terms)
def ar_stem(sentence):
return " ".join([ar_stemmer.stemWord(i) for i in sentence.split()])
#removing stop sords function
def en_remove_stop_words(sentence):
terms=[]
stop_words= set(stopwords.words('english'))
words = sentence.split()
for term in words:
if term not in stop_words :
terms.append(term)
return " ".join(terms)
def en_stem(sentence):
token_words=word_tokenize(sentence)
return " ".join([porter.stem(word) for word in token_words])
def clean(text):
'''
Clean input text form urls, handles, tabs, line jumps, and extra white spaces
'''
text = re.sub(r"http\S+", " ", text) # remove urls
text = re.sub(r"RT ", " ", text) # remove rt
text = re.sub(r"@[\w]*", " ", text) # remove handles
text = re.sub(r"[\.\,\#_\|\:\?\?\/\=]", " ", text)# remove special characters
text = re.sub(r"\t", " ", text) # remove tabs
text = re.sub(r"\n", " ", text) # remove line jump
text = re.sub(r"\s+", " ", text) # remove extra white space
text = text.strip()
text = remove_emoji_smileys(text)
return text
def remove_emoji_smileys(text):
try:
# UCS-4
EMOJIS_PATTERN = re.compile(
u"([\U00002600-\U000027BF])|([\U0001f300-\U0001f64F])|([\U0001f680-\U0001f6FF])"
)
except re.error:
# UCS-2
EMOJIS_PATTERN = re.compile(
u"([\u2600-\u27BF])|([\uD83C][\uDF00-\uDFFF])|([\uD83D][\uDC00-\uDE4F])|([\uD83D][\uDE80-\uDEFF])"
)
SMILEYS_PATTERN = re.compile(r"(\s?:X|:|;|=)(?:-)?(?:\)+|\(|O|D|P|S|\\|\/\s){1,}", re.IGNORECASE)
text = SMILEYS_PATTERN.sub(r"", text)
text = EMOJIS_PATTERN.sub(r"", text)
return text
def preprocess_english(sentence):
# apply preprocessing steps on the given sentence
sentence = sentence.lower()
sentence = en_remove_stop_words(sentence)
sentence = en_stem(sentence)
return sentence
def preprocess_arabic(sentence): # for Arabic
# apply preprocessing steps on the given sentence
sentence = normalize_arabic(sentence)
sentence = ar_remove_stop_words(sentence)
sentence = ar_stem(sentence)
return sentence
def preprocess(query, lang):
query = clean(query)
query = remove_punctuation(query)
if lang == "en":
return preprocess_english(query)
else:
return preprocess_arabic(query)
def initailize_logger(logger, log_file, level):
if not len(logger.handlers): # avoid creating more than one handler
formatter = logging.Formatter('%(asctime)s %(levelname)s: %(message)s', datefmt='%Y-%m-%d %H:%M:%S')
fileHandler = logging.FileHandler(log_file)
fileHandler.setFormatter(formatter)
streamHandler = logging.StreamHandler()
streamHandler.setFormatter(formatter)
logger.setLevel(level)
logger.addHandler(fileHandler)
logger.addHandler(streamHandler)
return logger
|