--- base_model: unsloth/qwen2.5-3b-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - trl language: - en - ar datasets: - Yasbok/Alpaca_arabic_instruct --- # Uploaded model - **Developed by:** Wajdi1976 - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2.5-3b-bnb-4bit ### First, Load the Model ```python from unsloth import FastLanguageModel import torch max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally! dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+ load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False. model, tokenizer = FastLanguageModel.from_pretrained( model_name = "Wajdi1976/alpaca_arabic_Qwen2.5-3B", max_seq_length = max_seq_length, dtype = dtype, load_in_4bit = load_in_4bit, # token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf ) ``` ### Second, Try the model ```python alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: {} ### Input: {} ### Response: {}""" # alpaca_prompt = Copied from above FastLanguageModel.for_inference(model) # Enable native 2x faster inference inputs = tokenizer( [ alpaca_prompt.format( "استخدم البيانات المعطاة لحساب الوسيط.", # instruction "[2 ، 3 ، 7 ، 8 ، 10]", # input "", # output - leave this blank for generation! ) ], return_tensors = "pt").to("cuda") outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True) tokenizer.batch_decode(outputs) ``` This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [](https://github.com/unslothai/unsloth)