--- library_name: transformers license: mit base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B tags: - generated_from_trainer - gguf - quantized - inference model-index: - name: MyModel2 results: [] --- # MyModel2 This model is a fine-tuned version of [deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1089 ## Model description This is a fine-tuned model available in both **SafeTensors** and **GGUF** formats. The GGUF version allows efficient inference with tools like `llama.cpp` and `ctransformers`. ## Intended uses & limitations This model can be used for various natural language processing tasks. However, it may have limitations based on the dataset and fine-tuning constraints. ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.9498 | 0.2693 | 500 | 0.6119 | | 0.6245 | 0.5385 | 1000 | 0.5831 | | 0.5931 | 0.8078 | 1500 | 0.5462 | | 0.561 | 1.0770 | 2000 | 0.5148 | | 0.5312 | 1.3463 | 2500 | 0.4750 | | 0.523 | 1.6155 | 3000 | 0.4421 | | 0.5121 | 1.8848 | 3500 | 0.4096 | | 0.4059 | 2.1540 | 4000 | 0.3263 | | 0.3559 | 2.4233 | 4500 | 0.2780 | | 0.3409 | 2.6925 | 5000 | 0.2367 | | 0.3352 | 2.9618 | 5500 | 0.1973 | | 0.1918 | 3.2310 | 6000 | 0.1652 | | 0.1826 | 3.5003 | 6500 | 0.1507 | | 0.1762 | 3.7695 | 7000 | 0.1360 | | 0.168 | 4.0388 | 7500 | 0.1232 | | 0.1186 | 4.3080 | 8000 | 0.1193 | | 0.1227 | 4.5773 | 8500 | 0.1134 | | 0.1273 | 4.8465 | 9000 | 0.1089 | ## Inference This model supports inference via GGUF using `llama.cpp` or `ctransformers`. ### **Using `llama.cpp` (CLI)** ```bash git clone https://github.com/ggerganov/llama.cpp.git cd llama.cpp make -j ./main -m first.gguf -p "Hello, how are you?" ``` ### **Using `ctransformers` (Python)** ```python from ctransformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained( "your_username/your_model_repo", model_file="first.gguf", model_type="llama" ) output = model("Hello, how are you?") print(output) ``` ## Framework versions - Transformers 4.48.2 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0