|
from transformers import BertPreTrainedModel, BertConfig |
|
import torch.nn as nn |
|
import torch |
|
from transformers.models.xlm_roberta.configuration_xlm_roberta import XLMRobertaConfig |
|
from transformers import XLMRobertaModel,XLMRobertaTokenizer |
|
from typing import Optional |
|
|
|
class BertSeriesConfig(BertConfig): |
|
def __init__(self, vocab_size=30522, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=0, position_embedding_type="absolute", use_cache=True, classifier_dropout=None,project_dim=512, pooler_fn="average",learn_encoder=False,model_type='bert',**kwargs): |
|
|
|
super().__init__(vocab_size, hidden_size, num_hidden_layers, num_attention_heads, intermediate_size, hidden_act, hidden_dropout_prob, attention_probs_dropout_prob, max_position_embeddings, type_vocab_size, initializer_range, layer_norm_eps, pad_token_id, position_embedding_type, use_cache, classifier_dropout, **kwargs) |
|
self.project_dim = project_dim |
|
self.pooler_fn = pooler_fn |
|
self.learn_encoder = learn_encoder |
|
|
|
class RobertaSeriesConfig(XLMRobertaConfig): |
|
def __init__(self, pad_token_id=1, bos_token_id=0, eos_token_id=2,project_dim=512,pooler_fn='cls',learn_encoder=False, **kwargs): |
|
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) |
|
self.project_dim = project_dim |
|
self.pooler_fn = pooler_fn |
|
self.learn_encoder = learn_encoder |
|
|
|
|
|
class BertSeriesModelWithTransformation(BertPreTrainedModel): |
|
|
|
_keys_to_ignore_on_load_unexpected = [r"pooler"] |
|
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"] |
|
config_class = BertSeriesConfig |
|
|
|
def __init__(self, config=None, **kargs): |
|
|
|
if config is None: |
|
config = XLMRobertaConfig() |
|
config.attention_probs_dropout_prob= 0.1 |
|
config.bos_token_id=0 |
|
config.eos_token_id=2 |
|
config.hidden_act='gelu' |
|
config.hidden_dropout_prob=0.1 |
|
config.hidden_size=1024 |
|
config.initializer_range=0.02 |
|
config.intermediate_size=4096 |
|
config.layer_norm_eps=1e-05 |
|
config.max_position_embeddings=514 |
|
|
|
config.num_attention_heads=16 |
|
config.num_hidden_layers=24 |
|
config.output_past=True |
|
config.pad_token_id=1 |
|
config.position_embedding_type= "absolute" |
|
|
|
config.type_vocab_size= 1 |
|
config.use_cache=True |
|
config.vocab_size= 250002 |
|
config.project_dim = 768 |
|
config.learn_encoder = False |
|
super().__init__(config) |
|
self.roberta = XLMRobertaModel(config) |
|
self.transformation = nn.Linear(config.hidden_size,config.project_dim) |
|
self.pre_LN=nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.tokenizer = XLMRobertaTokenizer.from_pretrained('xlm-roberta-large') |
|
self.pooler = lambda x: x[:,0] |
|
self.post_init() |
|
|
|
def encode(self,c): |
|
device = next(self.parameters()).device |
|
text = self.tokenizer(c, |
|
truncation=True, |
|
max_length=77, |
|
return_length=False, |
|
return_overflowing_tokens=False, |
|
padding="max_length", |
|
return_tensors="pt") |
|
text["input_ids"] = torch.tensor(text["input_ids"]).to(device) |
|
text["attention_mask"] = torch.tensor( |
|
text['attention_mask']).to(device) |
|
features = self(**text) |
|
return features['projection_state'] |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
) : |
|
r""" |
|
""" |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
outputs = self.roberta( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=True, |
|
return_dict=return_dict, |
|
) |
|
|
|
|
|
sequence_output = outputs[0] |
|
|
|
|
|
|
|
sequence_output_ln = self.pre_LN(sequence_output) |
|
|
|
|
|
pooler_output = self.pooler(sequence_output_ln) |
|
pooler_output = self.transformation(pooler_output) |
|
projection_state = self.transformation(outputs.last_hidden_state) |
|
|
|
return { |
|
'pooler_output':pooler_output, |
|
'last_hidden_state':outputs.last_hidden_state, |
|
'hidden_states':outputs.hidden_states, |
|
'attentions':outputs.attentions, |
|
'projection_state':projection_state, |
|
'sequence_out': sequence_output |
|
} |
|
|
|
|
|
class RobertaSeriesModelWithTransformation(BertSeriesModelWithTransformation): |
|
base_model_prefix = 'roberta' |
|
config_class= RobertaSeriesConfig |
|
|