|
""" |
|
Tiny AutoEncoder for Stable Diffusion |
|
(DNN for encoding / decoding SD's latent space) |
|
|
|
https://github.com/madebyollin/taesd |
|
""" |
|
import os |
|
import torch |
|
import torch.nn as nn |
|
|
|
from modules import devices, paths_internal, shared |
|
|
|
sd_vae_taesd_models = {} |
|
|
|
|
|
def conv(n_in, n_out, **kwargs): |
|
return nn.Conv2d(n_in, n_out, 3, padding=1, **kwargs) |
|
|
|
|
|
class Clamp(nn.Module): |
|
@staticmethod |
|
def forward(x): |
|
return torch.tanh(x / 3) * 3 |
|
|
|
|
|
class Block(nn.Module): |
|
def __init__(self, n_in, n_out): |
|
super().__init__() |
|
self.conv = nn.Sequential(conv(n_in, n_out), nn.ReLU(), conv(n_out, n_out), nn.ReLU(), conv(n_out, n_out)) |
|
self.skip = nn.Conv2d(n_in, n_out, 1, bias=False) if n_in != n_out else nn.Identity() |
|
self.fuse = nn.ReLU() |
|
|
|
def forward(self, x): |
|
return self.fuse(self.conv(x) + self.skip(x)) |
|
|
|
|
|
def decoder(): |
|
return nn.Sequential( |
|
Clamp(), conv(4, 64), nn.ReLU(), |
|
Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False), |
|
Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False), |
|
Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False), |
|
Block(64, 64), conv(64, 3), |
|
) |
|
|
|
|
|
def encoder(): |
|
return nn.Sequential( |
|
conv(3, 64), Block(64, 64), |
|
conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64), |
|
conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64), |
|
conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64), |
|
conv(64, 4), |
|
) |
|
|
|
|
|
class TAESDDecoder(nn.Module): |
|
latent_magnitude = 3 |
|
latent_shift = 0.5 |
|
|
|
def __init__(self, decoder_path="taesd_decoder.pth"): |
|
"""Initialize pretrained TAESD on the given device from the given checkpoints.""" |
|
super().__init__() |
|
self.decoder = decoder() |
|
self.decoder.load_state_dict( |
|
torch.load(decoder_path, map_location='cpu' if devices.device.type != 'cuda' else None)) |
|
|
|
|
|
class TAESDEncoder(nn.Module): |
|
latent_magnitude = 3 |
|
latent_shift = 0.5 |
|
|
|
def __init__(self, encoder_path="taesd_encoder.pth"): |
|
"""Initialize pretrained TAESD on the given device from the given checkpoints.""" |
|
super().__init__() |
|
self.encoder = encoder() |
|
self.encoder.load_state_dict( |
|
torch.load(encoder_path, map_location='cpu' if devices.device.type != 'cuda' else None)) |
|
|
|
|
|
def download_model(model_path, model_url): |
|
if not os.path.exists(model_path): |
|
os.makedirs(os.path.dirname(model_path), exist_ok=True) |
|
|
|
print(f'Downloading TAESD model to: {model_path}') |
|
torch.hub.download_url_to_file(model_url, model_path) |
|
|
|
|
|
def decoder_model(): |
|
model_name = "taesdxl_decoder.pth" if getattr(shared.sd_model, 'is_sdxl', False) else "taesd_decoder.pth" |
|
loaded_model = sd_vae_taesd_models.get(model_name) |
|
|
|
if loaded_model is None: |
|
model_path = os.path.join(paths_internal.models_path, "VAE-taesd", model_name) |
|
download_model(model_path, 'https://github.com/madebyollin/taesd/raw/main/' + model_name) |
|
|
|
if os.path.exists(model_path): |
|
loaded_model = TAESDDecoder(model_path) |
|
loaded_model.eval() |
|
loaded_model.to(devices.device, devices.dtype) |
|
sd_vae_taesd_models[model_name] = loaded_model |
|
else: |
|
raise FileNotFoundError('TAESD model not found') |
|
|
|
return loaded_model.decoder |
|
|
|
|
|
def encoder_model(): |
|
model_name = "taesdxl_encoder.pth" if getattr(shared.sd_model, 'is_sdxl', False) else "taesd_encoder.pth" |
|
loaded_model = sd_vae_taesd_models.get(model_name) |
|
|
|
if loaded_model is None: |
|
model_path = os.path.join(paths_internal.models_path, "VAE-taesd", model_name) |
|
download_model(model_path, 'https://github.com/madebyollin/taesd/raw/main/' + model_name) |
|
|
|
if os.path.exists(model_path): |
|
loaded_model = TAESDEncoder(model_path) |
|
loaded_model.eval() |
|
loaded_model.to(devices.device, devices.dtype) |
|
sd_vae_taesd_models[model_name] = loaded_model |
|
else: |
|
raise FileNotFoundError('TAESD model not found') |
|
|
|
return loaded_model.encoder |
|
|