|
import torch |
|
import inspect |
|
import k_diffusion.sampling |
|
from modules import sd_samplers_common, sd_samplers_extra, sd_samplers_cfg_denoiser |
|
from modules.sd_samplers_cfg_denoiser import CFGDenoiser |
|
from modules.script_callbacks import ExtraNoiseParams, extra_noise_callback |
|
|
|
from modules.shared import opts |
|
import modules.shared as shared |
|
|
|
samplers_k_diffusion = [ |
|
('DPM++ 2M Karras', 'sample_dpmpp_2m', ['k_dpmpp_2m_ka'], {'scheduler': 'karras'}), |
|
('DPM++ SDE Karras', 'sample_dpmpp_sde', ['k_dpmpp_sde_ka'], {'scheduler': 'karras', "second_order": True, "brownian_noise": True}), |
|
('DPM++ 2M SDE Exponential', 'sample_dpmpp_2m_sde', ['k_dpmpp_2m_sde_exp'], {'scheduler': 'exponential', "brownian_noise": True}), |
|
('DPM++ 2M SDE Karras', 'sample_dpmpp_2m_sde', ['k_dpmpp_2m_sde_ka'], {'scheduler': 'karras', "brownian_noise": True}), |
|
('Euler a', 'sample_euler_ancestral', ['k_euler_a', 'k_euler_ancestral'], {"uses_ensd": True}), |
|
('Euler', 'sample_euler', ['k_euler'], {}), |
|
('LMS', 'sample_lms', ['k_lms'], {}), |
|
('Heun', 'sample_heun', ['k_heun'], {"second_order": True}), |
|
('DPM2', 'sample_dpm_2', ['k_dpm_2'], {'discard_next_to_last_sigma': True, "second_order": True}), |
|
('DPM2 a', 'sample_dpm_2_ancestral', ['k_dpm_2_a'], {'discard_next_to_last_sigma': True, "uses_ensd": True, "second_order": True}), |
|
('DPM++ 2S a', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a'], {"uses_ensd": True, "second_order": True}), |
|
('DPM++ 2M', 'sample_dpmpp_2m', ['k_dpmpp_2m'], {}), |
|
('DPM++ SDE', 'sample_dpmpp_sde', ['k_dpmpp_sde'], {"second_order": True, "brownian_noise": True}), |
|
('DPM++ 2M SDE', 'sample_dpmpp_2m_sde', ['k_dpmpp_2m_sde_ka'], {"brownian_noise": True}), |
|
('DPM++ 2M SDE Heun', 'sample_dpmpp_2m_sde', ['k_dpmpp_2m_sde_heun'], {"brownian_noise": True, "solver_type": "heun"}), |
|
('DPM++ 2M SDE Heun Karras', 'sample_dpmpp_2m_sde', ['k_dpmpp_2m_sde_heun_ka'], {'scheduler': 'karras', "brownian_noise": True, "solver_type": "heun"}), |
|
('DPM++ 2M SDE Heun Exponential', 'sample_dpmpp_2m_sde', ['k_dpmpp_2m_sde_heun_exp'], {'scheduler': 'exponential', "brownian_noise": True, "solver_type": "heun"}), |
|
('DPM++ 3M SDE', 'sample_dpmpp_3m_sde', ['k_dpmpp_3m_sde'], {'discard_next_to_last_sigma': True, "brownian_noise": True}), |
|
('DPM++ 3M SDE Karras', 'sample_dpmpp_3m_sde', ['k_dpmpp_3m_sde_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True, "brownian_noise": True}), |
|
('DPM++ 3M SDE Exponential', 'sample_dpmpp_3m_sde', ['k_dpmpp_3m_sde_exp'], {'scheduler': 'exponential', 'discard_next_to_last_sigma': True, "brownian_noise": True}), |
|
('DPM fast', 'sample_dpm_fast', ['k_dpm_fast'], {"uses_ensd": True}), |
|
('DPM adaptive', 'sample_dpm_adaptive', ['k_dpm_ad'], {"uses_ensd": True}), |
|
('LMS Karras', 'sample_lms', ['k_lms_ka'], {'scheduler': 'karras'}), |
|
('DPM2 Karras', 'sample_dpm_2', ['k_dpm_2_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True, "uses_ensd": True, "second_order": True}), |
|
('DPM2 a Karras', 'sample_dpm_2_ancestral', ['k_dpm_2_a_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True, "uses_ensd": True, "second_order": True}), |
|
('DPM++ 2S a Karras', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a_ka'], {'scheduler': 'karras', "uses_ensd": True, "second_order": True}), |
|
('Restart', sd_samplers_extra.restart_sampler, ['restart'], {'scheduler': 'karras', "second_order": True}), |
|
] |
|
|
|
|
|
samplers_data_k_diffusion = [ |
|
sd_samplers_common.SamplerData(label, lambda model, funcname=funcname: KDiffusionSampler(funcname, model), aliases, options) |
|
for label, funcname, aliases, options in samplers_k_diffusion |
|
if callable(funcname) or hasattr(k_diffusion.sampling, funcname) |
|
] |
|
|
|
sampler_extra_params = { |
|
'sample_euler': ['s_churn', 's_tmin', 's_tmax', 's_noise'], |
|
'sample_heun': ['s_churn', 's_tmin', 's_tmax', 's_noise'], |
|
'sample_dpm_2': ['s_churn', 's_tmin', 's_tmax', 's_noise'], |
|
'sample_dpm_fast': ['s_noise'], |
|
'sample_dpm_2_ancestral': ['s_noise'], |
|
'sample_dpmpp_2s_ancestral': ['s_noise'], |
|
'sample_dpmpp_sde': ['s_noise'], |
|
'sample_dpmpp_2m_sde': ['s_noise'], |
|
'sample_dpmpp_3m_sde': ['s_noise'], |
|
} |
|
|
|
k_diffusion_samplers_map = {x.name: x for x in samplers_data_k_diffusion} |
|
k_diffusion_scheduler = { |
|
'Automatic': None, |
|
'karras': k_diffusion.sampling.get_sigmas_karras, |
|
'exponential': k_diffusion.sampling.get_sigmas_exponential, |
|
'polyexponential': k_diffusion.sampling.get_sigmas_polyexponential |
|
} |
|
|
|
|
|
class CFGDenoiserKDiffusion(sd_samplers_cfg_denoiser.CFGDenoiser): |
|
@property |
|
def inner_model(self): |
|
if self.model_wrap is None: |
|
denoiser = k_diffusion.external.CompVisVDenoiser if shared.sd_model.parameterization == "v" else k_diffusion.external.CompVisDenoiser |
|
self.model_wrap = denoiser(shared.sd_model, quantize=shared.opts.enable_quantization) |
|
|
|
return self.model_wrap |
|
|
|
|
|
class KDiffusionSampler(sd_samplers_common.Sampler): |
|
def __init__(self, funcname, sd_model, options=None): |
|
super().__init__(funcname) |
|
|
|
self.extra_params = sampler_extra_params.get(funcname, []) |
|
|
|
self.options = options or {} |
|
self.func = funcname if callable(funcname) else getattr(k_diffusion.sampling, self.funcname) |
|
|
|
self.model_wrap_cfg = CFGDenoiserKDiffusion(self) |
|
self.model_wrap = self.model_wrap_cfg.inner_model |
|
|
|
def get_sigmas(self, p, steps): |
|
discard_next_to_last_sigma = self.config is not None and self.config.options.get('discard_next_to_last_sigma', False) |
|
if opts.always_discard_next_to_last_sigma and not discard_next_to_last_sigma: |
|
discard_next_to_last_sigma = True |
|
p.extra_generation_params["Discard penultimate sigma"] = True |
|
|
|
steps += 1 if discard_next_to_last_sigma else 0 |
|
|
|
if p.sampler_noise_scheduler_override: |
|
sigmas = p.sampler_noise_scheduler_override(steps) |
|
elif opts.k_sched_type != "Automatic": |
|
m_sigma_min, m_sigma_max = (self.model_wrap.sigmas[0].item(), self.model_wrap.sigmas[-1].item()) |
|
sigma_min, sigma_max = (0.1, 10) if opts.use_old_karras_scheduler_sigmas else (m_sigma_min, m_sigma_max) |
|
sigmas_kwargs = { |
|
'sigma_min': sigma_min, |
|
'sigma_max': sigma_max, |
|
} |
|
|
|
sigmas_func = k_diffusion_scheduler[opts.k_sched_type] |
|
p.extra_generation_params["Schedule type"] = opts.k_sched_type |
|
|
|
if opts.sigma_min != m_sigma_min and opts.sigma_min != 0: |
|
sigmas_kwargs['sigma_min'] = opts.sigma_min |
|
p.extra_generation_params["Schedule min sigma"] = opts.sigma_min |
|
if opts.sigma_max != m_sigma_max and opts.sigma_max != 0: |
|
sigmas_kwargs['sigma_max'] = opts.sigma_max |
|
p.extra_generation_params["Schedule max sigma"] = opts.sigma_max |
|
|
|
default_rho = 1. if opts.k_sched_type == "polyexponential" else 7. |
|
|
|
if opts.k_sched_type != 'exponential' and opts.rho != 0 and opts.rho != default_rho: |
|
sigmas_kwargs['rho'] = opts.rho |
|
p.extra_generation_params["Schedule rho"] = opts.rho |
|
|
|
sigmas = sigmas_func(n=steps, **sigmas_kwargs, device=shared.device) |
|
elif self.config is not None and self.config.options.get('scheduler', None) == 'karras': |
|
sigma_min, sigma_max = (0.1, 10) if opts.use_old_karras_scheduler_sigmas else (self.model_wrap.sigmas[0].item(), self.model_wrap.sigmas[-1].item()) |
|
|
|
sigmas = k_diffusion.sampling.get_sigmas_karras(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, device=shared.device) |
|
elif self.config is not None and self.config.options.get('scheduler', None) == 'exponential': |
|
m_sigma_min, m_sigma_max = (self.model_wrap.sigmas[0].item(), self.model_wrap.sigmas[-1].item()) |
|
sigmas = k_diffusion.sampling.get_sigmas_exponential(n=steps, sigma_min=m_sigma_min, sigma_max=m_sigma_max, device=shared.device) |
|
else: |
|
sigmas = self.model_wrap.get_sigmas(steps) |
|
|
|
if discard_next_to_last_sigma: |
|
sigmas = torch.cat([sigmas[:-2], sigmas[-1:]]) |
|
|
|
return sigmas |
|
|
|
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None): |
|
steps, t_enc = sd_samplers_common.setup_img2img_steps(p, steps) |
|
|
|
sigmas = self.get_sigmas(p, steps) |
|
sigma_sched = sigmas[steps - t_enc - 1:] |
|
|
|
xi = x + noise * sigma_sched[0] |
|
|
|
if opts.img2img_extra_noise > 0: |
|
p.extra_generation_params["Extra noise"] = opts.img2img_extra_noise |
|
extra_noise_params = ExtraNoiseParams(noise, x, xi) |
|
extra_noise_callback(extra_noise_params) |
|
noise = extra_noise_params.noise |
|
xi += noise * opts.img2img_extra_noise |
|
|
|
extra_params_kwargs = self.initialize(p) |
|
parameters = inspect.signature(self.func).parameters |
|
|
|
if 'sigma_min' in parameters: |
|
|
|
extra_params_kwargs['sigma_min'] = sigma_sched[-2] |
|
if 'sigma_max' in parameters: |
|
extra_params_kwargs['sigma_max'] = sigma_sched[0] |
|
if 'n' in parameters: |
|
extra_params_kwargs['n'] = len(sigma_sched) - 1 |
|
if 'sigma_sched' in parameters: |
|
extra_params_kwargs['sigma_sched'] = sigma_sched |
|
if 'sigmas' in parameters: |
|
extra_params_kwargs['sigmas'] = sigma_sched |
|
|
|
if self.config.options.get('brownian_noise', False): |
|
noise_sampler = self.create_noise_sampler(x, sigmas, p) |
|
extra_params_kwargs['noise_sampler'] = noise_sampler |
|
|
|
if self.config.options.get('solver_type', None) == 'heun': |
|
extra_params_kwargs['solver_type'] = 'heun' |
|
|
|
self.model_wrap_cfg.init_latent = x |
|
self.last_latent = x |
|
self.sampler_extra_args = { |
|
'cond': conditioning, |
|
'image_cond': image_conditioning, |
|
'uncond': unconditional_conditioning, |
|
'cond_scale': p.cfg_scale, |
|
's_min_uncond': self.s_min_uncond |
|
} |
|
|
|
samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args=self.sampler_extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs)) |
|
|
|
if self.model_wrap_cfg.padded_cond_uncond: |
|
p.extra_generation_params["Pad conds"] = True |
|
|
|
return samples |
|
|
|
def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning=None): |
|
steps = steps or p.steps |
|
|
|
sigmas = self.get_sigmas(p, steps) |
|
|
|
if opts.sgm_noise_multiplier: |
|
p.extra_generation_params["SGM noise multiplier"] = True |
|
x = x * torch.sqrt(1.0 + sigmas[0] ** 2.0) |
|
else: |
|
x = x * sigmas[0] |
|
|
|
extra_params_kwargs = self.initialize(p) |
|
parameters = inspect.signature(self.func).parameters |
|
|
|
if 'n' in parameters: |
|
extra_params_kwargs['n'] = steps |
|
|
|
if 'sigma_min' in parameters: |
|
extra_params_kwargs['sigma_min'] = self.model_wrap.sigmas[0].item() |
|
extra_params_kwargs['sigma_max'] = self.model_wrap.sigmas[-1].item() |
|
|
|
if 'sigmas' in parameters: |
|
extra_params_kwargs['sigmas'] = sigmas |
|
|
|
if self.config.options.get('brownian_noise', False): |
|
noise_sampler = self.create_noise_sampler(x, sigmas, p) |
|
extra_params_kwargs['noise_sampler'] = noise_sampler |
|
|
|
if self.config.options.get('solver_type', None) == 'heun': |
|
extra_params_kwargs['solver_type'] = 'heun' |
|
|
|
self.last_latent = x |
|
self.sampler_extra_args = { |
|
'cond': conditioning, |
|
'image_cond': image_conditioning, |
|
'uncond': unconditional_conditioning, |
|
'cond_scale': p.cfg_scale, |
|
's_min_uncond': self.s_min_uncond |
|
} |
|
|
|
samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args=self.sampler_extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs)) |
|
|
|
if self.model_wrap_cfg.padded_cond_uncond: |
|
p.extra_generation_params["Pad conds"] = True |
|
|
|
return samples |
|
|
|
|
|
|