|
import collections |
|
import os.path |
|
import sys |
|
import gc |
|
import threading |
|
|
|
import torch |
|
import re |
|
import safetensors.torch |
|
from omegaconf import OmegaConf |
|
from os import mkdir |
|
from urllib import request |
|
import ldm.modules.midas as midas |
|
|
|
from ldm.util import instantiate_from_config |
|
|
|
from modules import paths, shared, modelloader, devices, script_callbacks, sd_vae, sd_disable_initialization, errors, hashes, sd_models_config, sd_unet, sd_models_xl, cache, extra_networks, processing, lowvram, sd_hijack |
|
from modules.timer import Timer |
|
import tomesd |
|
|
|
model_dir = "Stable-diffusion" |
|
model_path = os.path.abspath(os.path.join(paths.models_path, model_dir)) |
|
|
|
checkpoints_list = {} |
|
checkpoint_aliases = {} |
|
checkpoint_alisases = checkpoint_aliases |
|
checkpoints_loaded = collections.OrderedDict() |
|
|
|
|
|
def replace_key(d, key, new_key, value): |
|
keys = list(d.keys()) |
|
|
|
d[new_key] = value |
|
|
|
if key not in keys: |
|
return d |
|
|
|
index = keys.index(key) |
|
keys[index] = new_key |
|
|
|
new_d = {k: d[k] for k in keys} |
|
|
|
d.clear() |
|
d.update(new_d) |
|
return d |
|
|
|
|
|
class CheckpointInfo: |
|
def __init__(self, filename): |
|
self.filename = filename |
|
abspath = os.path.abspath(filename) |
|
|
|
self.is_safetensors = os.path.splitext(filename)[1].lower() == ".safetensors" |
|
|
|
if shared.cmd_opts.ckpt_dir is not None and abspath.startswith(shared.cmd_opts.ckpt_dir): |
|
name = abspath.replace(shared.cmd_opts.ckpt_dir, '') |
|
elif abspath.startswith(model_path): |
|
name = abspath.replace(model_path, '') |
|
else: |
|
name = os.path.basename(filename) |
|
|
|
if name.startswith("\\") or name.startswith("/"): |
|
name = name[1:] |
|
|
|
def read_metadata(): |
|
metadata = read_metadata_from_safetensors(filename) |
|
self.modelspec_thumbnail = metadata.pop('modelspec.thumbnail', None) |
|
|
|
return metadata |
|
|
|
self.metadata = {} |
|
if self.is_safetensors: |
|
try: |
|
self.metadata = cache.cached_data_for_file('safetensors-metadata', "checkpoint/" + name, filename, read_metadata) |
|
except Exception as e: |
|
errors.display(e, f"reading metadata for {filename}") |
|
|
|
self.name = name |
|
self.name_for_extra = os.path.splitext(os.path.basename(filename))[0] |
|
self.model_name = os.path.splitext(name.replace("/", "_").replace("\\", "_"))[0] |
|
self.hash = model_hash(filename) |
|
|
|
self.sha256 = hashes.sha256_from_cache(self.filename, f"checkpoint/{name}") |
|
self.shorthash = self.sha256[0:10] if self.sha256 else None |
|
|
|
self.title = name if self.shorthash is None else f'{name} [{self.shorthash}]' |
|
self.short_title = self.name_for_extra if self.shorthash is None else f'{self.name_for_extra} [{self.shorthash}]' |
|
|
|
self.ids = [self.hash, self.model_name, self.title, name, self.name_for_extra, f'{name} [{self.hash}]'] |
|
if self.shorthash: |
|
self.ids += [self.shorthash, self.sha256, f'{self.name} [{self.shorthash}]', f'{self.name_for_extra} [{self.shorthash}]'] |
|
|
|
def register(self): |
|
checkpoints_list[self.title] = self |
|
for id in self.ids: |
|
checkpoint_aliases[id] = self |
|
|
|
def calculate_shorthash(self): |
|
self.sha256 = hashes.sha256(self.filename, f"checkpoint/{self.name}") |
|
if self.sha256 is None: |
|
return |
|
|
|
shorthash = self.sha256[0:10] |
|
if self.shorthash == self.sha256[0:10]: |
|
return self.shorthash |
|
|
|
self.shorthash = shorthash |
|
|
|
if self.shorthash not in self.ids: |
|
self.ids += [self.shorthash, self.sha256, f'{self.name} [{self.shorthash}]', f'{self.name_for_extra} [{self.shorthash}]'] |
|
|
|
old_title = self.title |
|
self.title = f'{self.name} [{self.shorthash}]' |
|
self.short_title = f'{self.name_for_extra} [{self.shorthash}]' |
|
|
|
replace_key(checkpoints_list, old_title, self.title, self) |
|
self.register() |
|
|
|
return self.shorthash |
|
|
|
|
|
try: |
|
|
|
from transformers import logging, CLIPModel |
|
|
|
logging.set_verbosity_error() |
|
except Exception: |
|
pass |
|
|
|
|
|
def setup_model(): |
|
os.makedirs(model_path, exist_ok=True) |
|
|
|
enable_midas_autodownload() |
|
|
|
|
|
def checkpoint_tiles(use_short=False): |
|
return [x.short_title if use_short else x.title for x in checkpoints_list.values()] |
|
|
|
|
|
def list_models(): |
|
checkpoints_list.clear() |
|
checkpoint_aliases.clear() |
|
|
|
cmd_ckpt = shared.cmd_opts.ckpt |
|
if shared.cmd_opts.no_download_sd_model or cmd_ckpt != shared.sd_model_file or os.path.exists(cmd_ckpt): |
|
model_url = None |
|
else: |
|
model_url = "https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.safetensors" |
|
|
|
model_list = modelloader.load_models(model_path=model_path, model_url=model_url, command_path=shared.cmd_opts.ckpt_dir, ext_filter=[".ckpt", ".safetensors"], download_name="v1-5-pruned-emaonly.safetensors", ext_blacklist=[".vae.ckpt", ".vae.safetensors"]) |
|
|
|
if os.path.exists(cmd_ckpt): |
|
checkpoint_info = CheckpointInfo(cmd_ckpt) |
|
checkpoint_info.register() |
|
|
|
shared.opts.data['sd_model_checkpoint'] = checkpoint_info.title |
|
elif cmd_ckpt is not None and cmd_ckpt != shared.default_sd_model_file: |
|
print(f"Checkpoint in --ckpt argument not found (Possible it was moved to {model_path}: {cmd_ckpt}", file=sys.stderr) |
|
|
|
for filename in model_list: |
|
checkpoint_info = CheckpointInfo(filename) |
|
checkpoint_info.register() |
|
|
|
|
|
re_strip_checksum = re.compile(r"\s*\[[^]]+]\s*$") |
|
|
|
|
|
def get_closet_checkpoint_match(search_string): |
|
if not search_string: |
|
return None |
|
|
|
checkpoint_info = checkpoint_aliases.get(search_string, None) |
|
if checkpoint_info is not None: |
|
return checkpoint_info |
|
|
|
found = sorted([info for info in checkpoints_list.values() if search_string in info.title], key=lambda x: len(x.title)) |
|
if found: |
|
return found[0] |
|
|
|
search_string_without_checksum = re.sub(re_strip_checksum, '', search_string) |
|
found = sorted([info for info in checkpoints_list.values() if search_string_without_checksum in info.title], key=lambda x: len(x.title)) |
|
if found: |
|
return found[0] |
|
|
|
return None |
|
|
|
|
|
def model_hash(filename): |
|
"""old hash that only looks at a small part of the file and is prone to collisions""" |
|
|
|
try: |
|
with open(filename, "rb") as file: |
|
import hashlib |
|
m = hashlib.sha256() |
|
|
|
file.seek(0x100000) |
|
m.update(file.read(0x10000)) |
|
return m.hexdigest()[0:8] |
|
except FileNotFoundError: |
|
return 'NOFILE' |
|
|
|
|
|
def select_checkpoint(): |
|
"""Raises `FileNotFoundError` if no checkpoints are found.""" |
|
model_checkpoint = shared.opts.sd_model_checkpoint |
|
|
|
checkpoint_info = checkpoint_aliases.get(model_checkpoint, None) |
|
if checkpoint_info is not None: |
|
return checkpoint_info |
|
|
|
if len(checkpoints_list) == 0: |
|
error_message = "No checkpoints found. When searching for checkpoints, looked at:" |
|
if shared.cmd_opts.ckpt is not None: |
|
error_message += f"\n - file {os.path.abspath(shared.cmd_opts.ckpt)}" |
|
error_message += f"\n - directory {model_path}" |
|
if shared.cmd_opts.ckpt_dir is not None: |
|
error_message += f"\n - directory {os.path.abspath(shared.cmd_opts.ckpt_dir)}" |
|
error_message += "Can't run without a checkpoint. Find and place a .ckpt or .safetensors file into any of those locations." |
|
raise FileNotFoundError(error_message) |
|
|
|
checkpoint_info = next(iter(checkpoints_list.values())) |
|
if model_checkpoint is not None: |
|
print(f"Checkpoint {model_checkpoint} not found; loading fallback {checkpoint_info.title}", file=sys.stderr) |
|
|
|
return checkpoint_info |
|
|
|
|
|
checkpoint_dict_replacements = { |
|
'cond_stage_model.transformer.embeddings.': 'cond_stage_model.transformer.text_model.embeddings.', |
|
'cond_stage_model.transformer.encoder.': 'cond_stage_model.transformer.text_model.encoder.', |
|
'cond_stage_model.transformer.final_layer_norm.': 'cond_stage_model.transformer.text_model.final_layer_norm.', |
|
} |
|
|
|
|
|
def transform_checkpoint_dict_key(k): |
|
for text, replacement in checkpoint_dict_replacements.items(): |
|
if k.startswith(text): |
|
k = replacement + k[len(text):] |
|
|
|
return k |
|
|
|
|
|
def get_state_dict_from_checkpoint(pl_sd): |
|
pl_sd = pl_sd.pop("state_dict", pl_sd) |
|
pl_sd.pop("state_dict", None) |
|
|
|
sd = {} |
|
for k, v in pl_sd.items(): |
|
new_key = transform_checkpoint_dict_key(k) |
|
|
|
if new_key is not None: |
|
sd[new_key] = v |
|
|
|
pl_sd.clear() |
|
pl_sd.update(sd) |
|
|
|
return pl_sd |
|
|
|
|
|
def read_metadata_from_safetensors(filename): |
|
import json |
|
|
|
with open(filename, mode="rb") as file: |
|
metadata_len = file.read(8) |
|
metadata_len = int.from_bytes(metadata_len, "little") |
|
json_start = file.read(2) |
|
|
|
assert metadata_len > 2 and json_start in (b'{"', b"{'"), f"{filename} is not a safetensors file" |
|
json_data = json_start + file.read(metadata_len-2) |
|
json_obj = json.loads(json_data) |
|
|
|
res = {} |
|
for k, v in json_obj.get("__metadata__", {}).items(): |
|
res[k] = v |
|
if isinstance(v, str) and v[0:1] == '{': |
|
try: |
|
res[k] = json.loads(v) |
|
except Exception: |
|
pass |
|
|
|
return res |
|
|
|
|
|
def read_state_dict(checkpoint_file, print_global_state=False, map_location=None): |
|
_, extension = os.path.splitext(checkpoint_file) |
|
if extension.lower() == ".safetensors": |
|
device = map_location or shared.weight_load_location or devices.get_optimal_device_name() |
|
|
|
if not shared.opts.disable_mmap_load_safetensors: |
|
pl_sd = safetensors.torch.load_file(checkpoint_file, device=device) |
|
else: |
|
pl_sd = safetensors.torch.load(open(checkpoint_file, 'rb').read()) |
|
pl_sd = {k: v.to(device) for k, v in pl_sd.items()} |
|
else: |
|
pl_sd = torch.load(checkpoint_file, map_location=map_location or shared.weight_load_location) |
|
|
|
if print_global_state and "global_step" in pl_sd: |
|
print(f"Global Step: {pl_sd['global_step']}") |
|
|
|
sd = get_state_dict_from_checkpoint(pl_sd) |
|
return sd |
|
|
|
|
|
def get_checkpoint_state_dict(checkpoint_info: CheckpointInfo, timer): |
|
sd_model_hash = checkpoint_info.calculate_shorthash() |
|
timer.record("calculate hash") |
|
|
|
if checkpoint_info in checkpoints_loaded: |
|
|
|
print(f"Loading weights [{sd_model_hash}] from cache") |
|
return checkpoints_loaded[checkpoint_info] |
|
|
|
print(f"Loading weights [{sd_model_hash}] from {checkpoint_info.filename}") |
|
res = read_state_dict(checkpoint_info.filename) |
|
timer.record("load weights from disk") |
|
|
|
return res |
|
|
|
|
|
class SkipWritingToConfig: |
|
"""This context manager prevents load_model_weights from writing checkpoint name to the config when it loads weight.""" |
|
|
|
skip = False |
|
previous = None |
|
|
|
def __enter__(self): |
|
self.previous = SkipWritingToConfig.skip |
|
SkipWritingToConfig.skip = True |
|
return self |
|
|
|
def __exit__(self, exc_type, exc_value, exc_traceback): |
|
SkipWritingToConfig.skip = self.previous |
|
|
|
|
|
def load_model_weights(model, checkpoint_info: CheckpointInfo, state_dict, timer): |
|
sd_model_hash = checkpoint_info.calculate_shorthash() |
|
timer.record("calculate hash") |
|
|
|
if not SkipWritingToConfig.skip: |
|
shared.opts.data["sd_model_checkpoint"] = checkpoint_info.title |
|
|
|
if state_dict is None: |
|
state_dict = get_checkpoint_state_dict(checkpoint_info, timer) |
|
|
|
model.is_sdxl = hasattr(model, 'conditioner') |
|
model.is_sd2 = not model.is_sdxl and hasattr(model.cond_stage_model, 'model') |
|
model.is_sd1 = not model.is_sdxl and not model.is_sd2 |
|
|
|
if model.is_sdxl: |
|
sd_models_xl.extend_sdxl(model) |
|
|
|
model.load_state_dict(state_dict, strict=False) |
|
timer.record("apply weights to model") |
|
|
|
if shared.opts.sd_checkpoint_cache > 0: |
|
|
|
checkpoints_loaded[checkpoint_info] = state_dict |
|
|
|
del state_dict |
|
|
|
if shared.cmd_opts.opt_channelslast: |
|
model.to(memory_format=torch.channels_last) |
|
timer.record("apply channels_last") |
|
|
|
if shared.cmd_opts.no_half: |
|
model.float() |
|
devices.dtype_unet = torch.float32 |
|
timer.record("apply float()") |
|
else: |
|
vae = model.first_stage_model |
|
depth_model = getattr(model, 'depth_model', None) |
|
|
|
|
|
if shared.cmd_opts.no_half_vae: |
|
model.first_stage_model = None |
|
|
|
if shared.cmd_opts.upcast_sampling and depth_model: |
|
model.depth_model = None |
|
|
|
model.half() |
|
model.first_stage_model = vae |
|
if depth_model: |
|
model.depth_model = depth_model |
|
|
|
devices.dtype_unet = torch.float16 |
|
timer.record("apply half()") |
|
|
|
devices.unet_needs_upcast = shared.cmd_opts.upcast_sampling and devices.dtype == torch.float16 and devices.dtype_unet == torch.float16 |
|
|
|
model.first_stage_model.to(devices.dtype_vae) |
|
timer.record("apply dtype to VAE") |
|
|
|
|
|
while len(checkpoints_loaded) > shared.opts.sd_checkpoint_cache: |
|
checkpoints_loaded.popitem(last=False) |
|
|
|
model.sd_model_hash = sd_model_hash |
|
model.sd_model_checkpoint = checkpoint_info.filename |
|
model.sd_checkpoint_info = checkpoint_info |
|
shared.opts.data["sd_checkpoint_hash"] = checkpoint_info.sha256 |
|
|
|
if hasattr(model, 'logvar'): |
|
model.logvar = model.logvar.to(devices.device) |
|
|
|
sd_vae.delete_base_vae() |
|
sd_vae.clear_loaded_vae() |
|
vae_file, vae_source = sd_vae.resolve_vae(checkpoint_info.filename).tuple() |
|
sd_vae.load_vae(model, vae_file, vae_source) |
|
timer.record("load VAE") |
|
|
|
|
|
def enable_midas_autodownload(): |
|
""" |
|
Gives the ldm.modules.midas.api.load_model function automatic downloading. |
|
|
|
When the 512-depth-ema model, and other future models like it, is loaded, |
|
it calls midas.api.load_model to load the associated midas depth model. |
|
This function applies a wrapper to download the model to the correct |
|
location automatically. |
|
""" |
|
|
|
midas_path = os.path.join(paths.models_path, 'midas') |
|
|
|
|
|
|
|
|
|
for k, v in midas.api.ISL_PATHS.items(): |
|
file_name = os.path.basename(v) |
|
midas.api.ISL_PATHS[k] = os.path.join(midas_path, file_name) |
|
|
|
midas_urls = { |
|
"dpt_large": "https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt", |
|
"dpt_hybrid": "https://github.com/intel-isl/DPT/releases/download/1_0/dpt_hybrid-midas-501f0c75.pt", |
|
"midas_v21": "https://github.com/AlexeyAB/MiDaS/releases/download/midas_dpt/midas_v21-f6b98070.pt", |
|
"midas_v21_small": "https://github.com/AlexeyAB/MiDaS/releases/download/midas_dpt/midas_v21_small-70d6b9c8.pt", |
|
} |
|
|
|
midas.api.load_model_inner = midas.api.load_model |
|
|
|
def load_model_wrapper(model_type): |
|
path = midas.api.ISL_PATHS[model_type] |
|
if not os.path.exists(path): |
|
if not os.path.exists(midas_path): |
|
mkdir(midas_path) |
|
|
|
print(f"Downloading midas model weights for {model_type} to {path}") |
|
request.urlretrieve(midas_urls[model_type], path) |
|
print(f"{model_type} downloaded") |
|
|
|
return midas.api.load_model_inner(model_type) |
|
|
|
midas.api.load_model = load_model_wrapper |
|
|
|
|
|
def repair_config(sd_config): |
|
|
|
if not hasattr(sd_config.model.params, "use_ema"): |
|
sd_config.model.params.use_ema = False |
|
|
|
if hasattr(sd_config.model.params, 'unet_config'): |
|
if shared.cmd_opts.no_half: |
|
sd_config.model.params.unet_config.params.use_fp16 = False |
|
elif shared.cmd_opts.upcast_sampling: |
|
sd_config.model.params.unet_config.params.use_fp16 = True |
|
|
|
if getattr(sd_config.model.params.first_stage_config.params.ddconfig, "attn_type", None) == "vanilla-xformers" and not shared.xformers_available: |
|
sd_config.model.params.first_stage_config.params.ddconfig.attn_type = "vanilla" |
|
|
|
|
|
if hasattr(sd_config.model.params, "noise_aug_config") and hasattr(sd_config.model.params.noise_aug_config.params, "clip_stats_path"): |
|
karlo_path = os.path.join(paths.models_path, 'karlo') |
|
sd_config.model.params.noise_aug_config.params.clip_stats_path = sd_config.model.params.noise_aug_config.params.clip_stats_path.replace("checkpoints/karlo_models", karlo_path) |
|
|
|
|
|
sd1_clip_weight = 'cond_stage_model.transformer.text_model.embeddings.token_embedding.weight' |
|
sd2_clip_weight = 'cond_stage_model.model.transformer.resblocks.0.attn.in_proj_weight' |
|
sdxl_clip_weight = 'conditioner.embedders.1.model.ln_final.weight' |
|
sdxl_refiner_clip_weight = 'conditioner.embedders.0.model.ln_final.weight' |
|
|
|
|
|
class SdModelData: |
|
def __init__(self): |
|
self.sd_model = None |
|
self.loaded_sd_models = [] |
|
self.was_loaded_at_least_once = False |
|
self.lock = threading.Lock() |
|
|
|
def get_sd_model(self): |
|
if self.was_loaded_at_least_once: |
|
return self.sd_model |
|
|
|
if self.sd_model is None: |
|
with self.lock: |
|
if self.sd_model is not None or self.was_loaded_at_least_once: |
|
return self.sd_model |
|
|
|
try: |
|
load_model() |
|
|
|
except Exception as e: |
|
errors.display(e, "loading stable diffusion model", full_traceback=True) |
|
print("", file=sys.stderr) |
|
print("Stable diffusion model failed to load", file=sys.stderr) |
|
self.sd_model = None |
|
|
|
return self.sd_model |
|
|
|
def set_sd_model(self, v, already_loaded=False): |
|
self.sd_model = v |
|
if already_loaded: |
|
sd_vae.base_vae = getattr(v, "base_vae", None) |
|
sd_vae.loaded_vae_file = getattr(v, "loaded_vae_file", None) |
|
sd_vae.checkpoint_info = v.sd_checkpoint_info |
|
|
|
try: |
|
self.loaded_sd_models.remove(v) |
|
except ValueError: |
|
pass |
|
|
|
if v is not None: |
|
self.loaded_sd_models.insert(0, v) |
|
|
|
|
|
model_data = SdModelData() |
|
|
|
|
|
def get_empty_cond(sd_model): |
|
|
|
p = processing.StableDiffusionProcessingTxt2Img() |
|
extra_networks.activate(p, {}) |
|
|
|
if hasattr(sd_model, 'conditioner'): |
|
d = sd_model.get_learned_conditioning([""]) |
|
return d['crossattn'] |
|
else: |
|
return sd_model.cond_stage_model([""]) |
|
|
|
|
|
def send_model_to_cpu(m): |
|
if m.lowvram: |
|
lowvram.send_everything_to_cpu() |
|
else: |
|
m.to(devices.cpu) |
|
|
|
devices.torch_gc() |
|
|
|
|
|
def model_target_device(m): |
|
if lowvram.is_needed(m): |
|
return devices.cpu |
|
else: |
|
return devices.device |
|
|
|
|
|
def send_model_to_device(m): |
|
lowvram.apply(m) |
|
|
|
if not m.lowvram: |
|
m.to(shared.device) |
|
|
|
|
|
def send_model_to_trash(m): |
|
m.to(device="meta") |
|
devices.torch_gc() |
|
|
|
|
|
def load_model(checkpoint_info=None, already_loaded_state_dict=None): |
|
from modules import sd_hijack |
|
checkpoint_info = checkpoint_info or select_checkpoint() |
|
|
|
timer = Timer() |
|
|
|
if model_data.sd_model: |
|
send_model_to_trash(model_data.sd_model) |
|
model_data.sd_model = None |
|
devices.torch_gc() |
|
|
|
timer.record("unload existing model") |
|
|
|
if already_loaded_state_dict is not None: |
|
state_dict = already_loaded_state_dict |
|
else: |
|
state_dict = get_checkpoint_state_dict(checkpoint_info, timer) |
|
|
|
checkpoint_config = sd_models_config.find_checkpoint_config(state_dict, checkpoint_info) |
|
clip_is_included_into_sd = any(x for x in [sd1_clip_weight, sd2_clip_weight, sdxl_clip_weight, sdxl_refiner_clip_weight] if x in state_dict) |
|
|
|
timer.record("find config") |
|
|
|
sd_config = OmegaConf.load(checkpoint_config) |
|
repair_config(sd_config) |
|
|
|
timer.record("load config") |
|
|
|
print(f"Creating model from config: {checkpoint_config}") |
|
|
|
sd_model = None |
|
try: |
|
with sd_disable_initialization.DisableInitialization(disable_clip=clip_is_included_into_sd or shared.cmd_opts.do_not_download_clip): |
|
with sd_disable_initialization.InitializeOnMeta(): |
|
sd_model = instantiate_from_config(sd_config.model) |
|
|
|
except Exception as e: |
|
errors.display(e, "creating model quickly", full_traceback=True) |
|
|
|
if sd_model is None: |
|
print('Failed to create model quickly; will retry using slow method.', file=sys.stderr) |
|
|
|
with sd_disable_initialization.InitializeOnMeta(): |
|
sd_model = instantiate_from_config(sd_config.model) |
|
|
|
sd_model.used_config = checkpoint_config |
|
|
|
timer.record("create model") |
|
|
|
if shared.cmd_opts.no_half: |
|
weight_dtype_conversion = None |
|
else: |
|
weight_dtype_conversion = { |
|
'first_stage_model': None, |
|
'': torch.float16, |
|
} |
|
|
|
with sd_disable_initialization.LoadStateDictOnMeta(state_dict, device=model_target_device(sd_model), weight_dtype_conversion=weight_dtype_conversion): |
|
load_model_weights(sd_model, checkpoint_info, state_dict, timer) |
|
timer.record("load weights from state dict") |
|
|
|
send_model_to_device(sd_model) |
|
timer.record("move model to device") |
|
|
|
sd_hijack.model_hijack.hijack(sd_model) |
|
|
|
timer.record("hijack") |
|
|
|
sd_model.eval() |
|
model_data.set_sd_model(sd_model) |
|
model_data.was_loaded_at_least_once = True |
|
|
|
sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings(force_reload=True) |
|
|
|
timer.record("load textual inversion embeddings") |
|
|
|
script_callbacks.model_loaded_callback(sd_model) |
|
|
|
timer.record("scripts callbacks") |
|
|
|
with devices.autocast(), torch.no_grad(): |
|
sd_model.cond_stage_model_empty_prompt = get_empty_cond(sd_model) |
|
|
|
timer.record("calculate empty prompt") |
|
|
|
print(f"Model loaded in {timer.summary()}.") |
|
|
|
return sd_model |
|
|
|
|
|
def reuse_model_from_already_loaded(sd_model, checkpoint_info, timer): |
|
""" |
|
Checks if the desired checkpoint from checkpoint_info is not already loaded in model_data.loaded_sd_models. |
|
If it is loaded, returns that (moving it to GPU if necessary, and moving the currently loadded model to CPU if necessary). |
|
If not, returns the model that can be used to load weights from checkpoint_info's file. |
|
If no such model exists, returns None. |
|
Additionaly deletes loaded models that are over the limit set in settings (sd_checkpoints_limit). |
|
""" |
|
|
|
already_loaded = None |
|
for i in reversed(range(len(model_data.loaded_sd_models))): |
|
loaded_model = model_data.loaded_sd_models[i] |
|
if loaded_model.sd_checkpoint_info.filename == checkpoint_info.filename: |
|
already_loaded = loaded_model |
|
continue |
|
|
|
if len(model_data.loaded_sd_models) > shared.opts.sd_checkpoints_limit > 0: |
|
print(f"Unloading model {len(model_data.loaded_sd_models)} over the limit of {shared.opts.sd_checkpoints_limit}: {loaded_model.sd_checkpoint_info.title}") |
|
model_data.loaded_sd_models.pop() |
|
send_model_to_trash(loaded_model) |
|
timer.record("send model to trash") |
|
|
|
if shared.opts.sd_checkpoints_keep_in_cpu: |
|
send_model_to_cpu(sd_model) |
|
timer.record("send model to cpu") |
|
|
|
if already_loaded is not None: |
|
send_model_to_device(already_loaded) |
|
timer.record("send model to device") |
|
|
|
model_data.set_sd_model(already_loaded, already_loaded=True) |
|
|
|
if not SkipWritingToConfig.skip: |
|
shared.opts.data["sd_model_checkpoint"] = already_loaded.sd_checkpoint_info.title |
|
shared.opts.data["sd_checkpoint_hash"] = already_loaded.sd_checkpoint_info.sha256 |
|
|
|
print(f"Using already loaded model {already_loaded.sd_checkpoint_info.title}: done in {timer.summary()}") |
|
sd_vae.reload_vae_weights(already_loaded) |
|
return model_data.sd_model |
|
elif shared.opts.sd_checkpoints_limit > 1 and len(model_data.loaded_sd_models) < shared.opts.sd_checkpoints_limit: |
|
print(f"Loading model {checkpoint_info.title} ({len(model_data.loaded_sd_models) + 1} out of {shared.opts.sd_checkpoints_limit})") |
|
|
|
model_data.sd_model = None |
|
load_model(checkpoint_info) |
|
return model_data.sd_model |
|
elif len(model_data.loaded_sd_models) > 0: |
|
sd_model = model_data.loaded_sd_models.pop() |
|
model_data.sd_model = sd_model |
|
|
|
sd_vae.base_vae = getattr(sd_model, "base_vae", None) |
|
sd_vae.loaded_vae_file = getattr(sd_model, "loaded_vae_file", None) |
|
sd_vae.checkpoint_info = sd_model.sd_checkpoint_info |
|
|
|
print(f"Reusing loaded model {sd_model.sd_checkpoint_info.title} to load {checkpoint_info.title}") |
|
return sd_model |
|
else: |
|
return None |
|
|
|
|
|
def reload_model_weights(sd_model=None, info=None): |
|
checkpoint_info = info or select_checkpoint() |
|
|
|
timer = Timer() |
|
|
|
if not sd_model: |
|
sd_model = model_data.sd_model |
|
|
|
if sd_model is None: |
|
current_checkpoint_info = None |
|
else: |
|
current_checkpoint_info = sd_model.sd_checkpoint_info |
|
if sd_model.sd_model_checkpoint == checkpoint_info.filename: |
|
return sd_model |
|
|
|
sd_model = reuse_model_from_already_loaded(sd_model, checkpoint_info, timer) |
|
if sd_model is not None and sd_model.sd_checkpoint_info.filename == checkpoint_info.filename: |
|
return sd_model |
|
|
|
if sd_model is not None: |
|
sd_unet.apply_unet("None") |
|
send_model_to_cpu(sd_model) |
|
sd_hijack.model_hijack.undo_hijack(sd_model) |
|
|
|
state_dict = get_checkpoint_state_dict(checkpoint_info, timer) |
|
|
|
checkpoint_config = sd_models_config.find_checkpoint_config(state_dict, checkpoint_info) |
|
|
|
timer.record("find config") |
|
|
|
if sd_model is None or checkpoint_config != sd_model.used_config: |
|
if sd_model is not None: |
|
send_model_to_trash(sd_model) |
|
|
|
load_model(checkpoint_info, already_loaded_state_dict=state_dict) |
|
return model_data.sd_model |
|
|
|
try: |
|
load_model_weights(sd_model, checkpoint_info, state_dict, timer) |
|
except Exception: |
|
print("Failed to load checkpoint, restoring previous") |
|
load_model_weights(sd_model, current_checkpoint_info, None, timer) |
|
raise |
|
finally: |
|
sd_hijack.model_hijack.hijack(sd_model) |
|
timer.record("hijack") |
|
|
|
script_callbacks.model_loaded_callback(sd_model) |
|
timer.record("script callbacks") |
|
|
|
if not sd_model.lowvram: |
|
sd_model.to(devices.device) |
|
timer.record("move model to device") |
|
|
|
print(f"Weights loaded in {timer.summary()}.") |
|
|
|
model_data.set_sd_model(sd_model) |
|
sd_unet.apply_unet() |
|
|
|
return sd_model |
|
|
|
|
|
def unload_model_weights(sd_model=None, info=None): |
|
timer = Timer() |
|
|
|
if model_data.sd_model: |
|
model_data.sd_model.to(devices.cpu) |
|
sd_hijack.model_hijack.undo_hijack(model_data.sd_model) |
|
model_data.sd_model = None |
|
sd_model = None |
|
gc.collect() |
|
devices.torch_gc() |
|
|
|
print(f"Unloaded weights {timer.summary()}.") |
|
|
|
return sd_model |
|
|
|
|
|
def apply_token_merging(sd_model, token_merging_ratio): |
|
""" |
|
Applies speed and memory optimizations from tomesd. |
|
""" |
|
|
|
current_token_merging_ratio = getattr(sd_model, 'applied_token_merged_ratio', 0) |
|
|
|
if current_token_merging_ratio == token_merging_ratio: |
|
return |
|
|
|
if current_token_merging_ratio > 0: |
|
tomesd.remove_patch(sd_model) |
|
|
|
if token_merging_ratio > 0: |
|
tomesd.apply_patch( |
|
sd_model, |
|
ratio=token_merging_ratio, |
|
use_rand=False, |
|
merge_attn=True, |
|
merge_crossattn=False, |
|
merge_mlp=False |
|
) |
|
|
|
sd_model.applied_token_merged_ratio = token_merging_ratio |
|
|