File size: 12,286 Bytes
d5e1b1b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
import inspect
from collections import namedtuple
import numpy as np
import torch
from PIL import Image
from modules import devices, images, sd_vae_approx, sd_samplers, sd_vae_taesd, shared, sd_models
from modules.shared import opts, state
import k_diffusion.sampling
SamplerDataTuple = namedtuple('SamplerData', ['name', 'constructor', 'aliases', 'options'])
class SamplerData(SamplerDataTuple):
def total_steps(self, steps):
if self.options.get("second_order", False):
steps = steps * 2
return steps
def setup_img2img_steps(p, steps=None):
if opts.img2img_fix_steps or steps is not None:
requested_steps = (steps or p.steps)
steps = int(requested_steps / min(p.denoising_strength, 0.999)) if p.denoising_strength > 0 else 0
t_enc = requested_steps - 1
else:
steps = p.steps
t_enc = int(min(p.denoising_strength, 0.999) * steps)
return steps, t_enc
approximation_indexes = {"Full": 0, "Approx NN": 1, "Approx cheap": 2, "TAESD": 3}
def samples_to_images_tensor(sample, approximation=None, model=None):
"""Transforms 4-channel latent space images into 3-channel RGB image tensors, with values in range [-1, 1]."""
if approximation is None or (shared.state.interrupted and opts.live_preview_fast_interrupt):
approximation = approximation_indexes.get(opts.show_progress_type, 0)
from modules import lowvram
if approximation == 0 and lowvram.is_enabled(shared.sd_model) and not shared.opts.live_preview_allow_lowvram_full:
approximation = 1
if approximation == 2:
x_sample = sd_vae_approx.cheap_approximation(sample)
elif approximation == 1:
x_sample = sd_vae_approx.model()(sample.to(devices.device, devices.dtype)).detach()
elif approximation == 3:
x_sample = sd_vae_taesd.decoder_model()(sample.to(devices.device, devices.dtype)).detach()
x_sample = x_sample * 2 - 1
else:
if model is None:
model = shared.sd_model
with devices.without_autocast(): # fixes an issue with unstable VAEs that are flaky even in fp32
x_sample = model.decode_first_stage(sample.to(model.first_stage_model.dtype))
return x_sample
def single_sample_to_image(sample, approximation=None):
x_sample = samples_to_images_tensor(sample.unsqueeze(0), approximation)[0] * 0.5 + 0.5
x_sample = torch.clamp(x_sample, min=0.0, max=1.0)
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
x_sample = x_sample.astype(np.uint8)
return Image.fromarray(x_sample)
def decode_first_stage(model, x):
x = x.to(devices.dtype_vae)
approx_index = approximation_indexes.get(opts.sd_vae_decode_method, 0)
return samples_to_images_tensor(x, approx_index, model)
def sample_to_image(samples, index=0, approximation=None):
return single_sample_to_image(samples[index], approximation)
def samples_to_image_grid(samples, approximation=None):
return images.image_grid([single_sample_to_image(sample, approximation) for sample in samples])
def images_tensor_to_samples(image, approximation=None, model=None):
'''image[0, 1] -> latent'''
if approximation is None:
approximation = approximation_indexes.get(opts.sd_vae_encode_method, 0)
if approximation == 3:
image = image.to(devices.device, devices.dtype)
x_latent = sd_vae_taesd.encoder_model()(image)
else:
if model is None:
model = shared.sd_model
model.first_stage_model.to(devices.dtype_vae)
image = image.to(shared.device, dtype=devices.dtype_vae)
image = image * 2 - 1
if len(image) > 1:
x_latent = torch.stack([
model.get_first_stage_encoding(
model.encode_first_stage(torch.unsqueeze(img, 0))
)[0]
for img in image
])
else:
x_latent = model.get_first_stage_encoding(model.encode_first_stage(image))
return x_latent
def store_latent(decoded):
state.current_latent = decoded
if opts.live_previews_enable and opts.show_progress_every_n_steps > 0 and shared.state.sampling_step % opts.show_progress_every_n_steps == 0:
if not shared.parallel_processing_allowed:
shared.state.assign_current_image(sample_to_image(decoded))
def is_sampler_using_eta_noise_seed_delta(p):
"""returns whether sampler from config will use eta noise seed delta for image creation"""
sampler_config = sd_samplers.find_sampler_config(p.sampler_name)
eta = p.eta
if eta is None and p.sampler is not None:
eta = p.sampler.eta
if eta is None and sampler_config is not None:
eta = 0 if sampler_config.options.get("default_eta_is_0", False) else 1.0
if eta == 0:
return False
return sampler_config.options.get("uses_ensd", False)
class InterruptedException(BaseException):
pass
def replace_torchsde_browinan():
import torchsde._brownian.brownian_interval
def torchsde_randn(size, dtype, device, seed):
return devices.randn_local(seed, size).to(device=device, dtype=dtype)
torchsde._brownian.brownian_interval._randn = torchsde_randn
replace_torchsde_browinan()
def apply_refiner(cfg_denoiser):
completed_ratio = cfg_denoiser.step / cfg_denoiser.total_steps
refiner_switch_at = cfg_denoiser.p.refiner_switch_at
refiner_checkpoint_info = cfg_denoiser.p.refiner_checkpoint_info
if refiner_switch_at is not None and completed_ratio < refiner_switch_at:
return False
if refiner_checkpoint_info is None or shared.sd_model.sd_checkpoint_info == refiner_checkpoint_info:
return False
if getattr(cfg_denoiser.p, "enable_hr", False):
is_second_pass = cfg_denoiser.p.is_hr_pass
if opts.hires_fix_refiner_pass == "first pass" and is_second_pass:
return False
if opts.hires_fix_refiner_pass == "second pass" and not is_second_pass:
return False
if opts.hires_fix_refiner_pass != "second pass":
cfg_denoiser.p.extra_generation_params['Hires refiner'] = opts.hires_fix_refiner_pass
cfg_denoiser.p.extra_generation_params['Refiner'] = refiner_checkpoint_info.short_title
cfg_denoiser.p.extra_generation_params['Refiner switch at'] = refiner_switch_at
with sd_models.SkipWritingToConfig():
sd_models.reload_model_weights(info=refiner_checkpoint_info)
devices.torch_gc()
cfg_denoiser.p.setup_conds()
cfg_denoiser.update_inner_model()
return True
class TorchHijack:
"""This is here to replace torch.randn_like of k-diffusion.
k-diffusion has random_sampler argument for most samplers, but not for all, so
this is needed to properly replace every use of torch.randn_like.
We need to replace to make images generated in batches to be same as images generated individually."""
def __init__(self, p):
self.rng = p.rng
def __getattr__(self, item):
if item == 'randn_like':
return self.randn_like
if hasattr(torch, item):
return getattr(torch, item)
raise AttributeError(f"'{type(self).__name__}' object has no attribute '{item}'")
def randn_like(self, x):
return self.rng.next()
class Sampler:
def __init__(self, funcname):
self.funcname = funcname
self.func = funcname
self.extra_params = []
self.sampler_noises = None
self.stop_at = None
self.eta = None
self.config: SamplerData = None # set by the function calling the constructor
self.last_latent = None
self.s_min_uncond = None
self.s_churn = 0.0
self.s_tmin = 0.0
self.s_tmax = float('inf')
self.s_noise = 1.0
self.eta_option_field = 'eta_ancestral'
self.eta_infotext_field = 'Eta'
self.eta_default = 1.0
self.conditioning_key = shared.sd_model.model.conditioning_key
self.p = None
self.model_wrap_cfg = None
self.sampler_extra_args = None
self.options = {}
def callback_state(self, d):
step = d['i']
if self.stop_at is not None and step > self.stop_at:
raise InterruptedException
state.sampling_step = step
shared.total_tqdm.update()
def launch_sampling(self, steps, func):
self.model_wrap_cfg.steps = steps
self.model_wrap_cfg.total_steps = self.config.total_steps(steps)
state.sampling_steps = steps
state.sampling_step = 0
try:
return func()
except RecursionError:
print(
'Encountered RecursionError during sampling, returning last latent. '
'rho >5 with a polyexponential scheduler may cause this error. '
'You should try to use a smaller rho value instead.'
)
return self.last_latent
except InterruptedException:
return self.last_latent
def number_of_needed_noises(self, p):
return p.steps
def initialize(self, p) -> dict:
self.p = p
self.model_wrap_cfg.p = p
self.model_wrap_cfg.mask = p.mask if hasattr(p, 'mask') else None
self.model_wrap_cfg.nmask = p.nmask if hasattr(p, 'nmask') else None
self.model_wrap_cfg.step = 0
self.model_wrap_cfg.image_cfg_scale = getattr(p, 'image_cfg_scale', None)
self.eta = p.eta if p.eta is not None else getattr(opts, self.eta_option_field, 0.0)
self.s_min_uncond = getattr(p, 's_min_uncond', 0.0)
k_diffusion.sampling.torch = TorchHijack(p)
extra_params_kwargs = {}
for param_name in self.extra_params:
if hasattr(p, param_name) and param_name in inspect.signature(self.func).parameters:
extra_params_kwargs[param_name] = getattr(p, param_name)
if 'eta' in inspect.signature(self.func).parameters:
if self.eta != self.eta_default:
p.extra_generation_params[self.eta_infotext_field] = self.eta
extra_params_kwargs['eta'] = self.eta
if len(self.extra_params) > 0:
s_churn = getattr(opts, 's_churn', p.s_churn)
s_tmin = getattr(opts, 's_tmin', p.s_tmin)
s_tmax = getattr(opts, 's_tmax', p.s_tmax) or self.s_tmax # 0 = inf
s_noise = getattr(opts, 's_noise', p.s_noise)
if 's_churn' in extra_params_kwargs and s_churn != self.s_churn:
extra_params_kwargs['s_churn'] = s_churn
p.s_churn = s_churn
p.extra_generation_params['Sigma churn'] = s_churn
if 's_tmin' in extra_params_kwargs and s_tmin != self.s_tmin:
extra_params_kwargs['s_tmin'] = s_tmin
p.s_tmin = s_tmin
p.extra_generation_params['Sigma tmin'] = s_tmin
if 's_tmax' in extra_params_kwargs and s_tmax != self.s_tmax:
extra_params_kwargs['s_tmax'] = s_tmax
p.s_tmax = s_tmax
p.extra_generation_params['Sigma tmax'] = s_tmax
if 's_noise' in extra_params_kwargs and s_noise != self.s_noise:
extra_params_kwargs['s_noise'] = s_noise
p.s_noise = s_noise
p.extra_generation_params['Sigma noise'] = s_noise
return extra_params_kwargs
def create_noise_sampler(self, x, sigmas, p):
"""For DPM++ SDE: manually create noise sampler to enable deterministic results across different batch sizes"""
if shared.opts.no_dpmpp_sde_batch_determinism:
return None
from k_diffusion.sampling import BrownianTreeNoiseSampler
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
current_iter_seeds = p.all_seeds[p.iteration * p.batch_size:(p.iteration + 1) * p.batch_size]
return BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=current_iter_seeds)
def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
raise NotImplementedError()
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
raise NotImplementedError()
|