--- library_name: transformers license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer datasets: - liar metrics: - accuracy model-index: - name: liar_binaryclassifier_bert_cased results: - task: name: Text Classification type: text-classification dataset: name: liar type: liar config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.648590021691974 --- # liar_binaryclassifier_bert_cased This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the liar dataset. It achieves the following results on the evaluation set: - Loss: 0.6331 - Model Preparation Time: 0.0032 - Accuracy: 0.6486 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:----------------------:|:--------:| | 0.6826 | 1.0 | 461 | 0.6477 | 0.0032 | 0.6117 | | 0.6435 | 2.0 | 922 | 0.6267 | 0.0032 | 0.6356 | | 0.6131 | 3.0 | 1383 | 0.6302 | 0.0032 | 0.6529 | | 0.5809 | 4.0 | 1844 | 0.6233 | 0.0032 | 0.6508 | | 0.5658 | 5.0 | 2305 | 0.6331 | 0.0032 | 0.6486 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1