import os.path as osp import glob import cv2 import numpy as np import torch import RRDBNet_arch as arch model_path = 'models/RRDB_ESRGAN_x4.pth' # models/RRDB_ESRGAN_x4.pth OR models/RRDB_PSNR_x4.pth device = torch.device('cpu') # if you want to run on CPU, change 'cuda' -> cpu # device = torch.device('cpu') test_img_folder = 'LR/*' model = arch.RRDBNet(3, 3, 64, 23, gc=32) model.load_state_dict(torch.load(model_path), strict=True) model.eval() model = model.to(device) print('Model path {:s}. \nTesting...'.format(model_path)) idx = 0 for path in glob.glob(test_img_folder): idx += 1 base = osp.splitext(osp.basename(path))[0] print(idx, base) # read images img = cv2.imread(path, cv2.IMREAD_COLOR) img = img * 1.0 / 255 img = torch.from_numpy(np.transpose(img[:, :, [2, 1, 0]], (2, 0, 1))).float() img_LR = img.unsqueeze(0) img_LR = img_LR.to(device) with torch.no_grad(): output = model(img_LR).data.squeeze().float().cpu().clamp_(0, 1).numpy() output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0)) output = (output * 255.0).round() cv2.imwrite('results/{:s}_rlt.png'.format(base), output)