--- base_model: meta-llama/Llama-2-7b-hf tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: Llama-2-7b-hf-finetuned-mrpc-v0.4 results: [] --- # Llama-2-7b-hf-finetuned-mrpc-v0.4 This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.4018 - Accuracy: 0.8431 - F1: 0.8877 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.6000000000000003e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 ### Training results | Training Loss | Epoch | Step | Accuracy | F1 | Validation Loss | |:-------------:|:-----:|:----:|:--------:|:------:|:---------------:| | No log | 1.0 | 230 | 0.6446 | 0.7695 | 0.6542 | | No log | 2.0 | 460 | 0.6912 | 0.7968 | 0.5938 | | 0.6489 | 3.0 | 690 | 0.7230 | 0.8151 | 0.5694 | | 0.6489 | 4.0 | 920 | 0.7230 | 0.8138 | 0.5503 | | 0.5299 | 5.0 | 1150 | 0.7402 | 0.8251 | 0.5492 | | 0.5299 | 6.0 | 1380 | 0.7794 | 0.8432 | 0.4880 | | 0.4687 | 7.0 | 1610 | 0.8064 | 0.8663 | 0.4559 | | 0.4687 | 8.0 | 1840 | 0.8186 | 0.875 | 0.4298 | | 0.374 | 9.0 | 2070 | 0.8284 | 0.8818 | 0.4210 | | 0.374 | 10.0 | 2300 | 0.8456 | 0.8916 | 0.3953 | | 0.3096 | 11.0 | 2530 | 0.8431 | 0.8897 | 0.4074 | | 0.3096 | 12.0 | 2760 | 0.8407 | 0.8862 | 0.4030 | | 0.3096 | 13.0 | 2990 | 0.3982 | 0.8456 | 0.8904 | | 0.2799 | 14.0 | 3220 | 0.3873 | 0.8456 | 0.8881 | | 0.2799 | 15.0 | 3450 | 0.3939 | 0.8529 | 0.8940 | | 0.2511 | 16.0 | 3680 | 0.4018 | 0.8431 | 0.8877 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3