--- datasets: - shenxq/OneVision - shenxq/VideoChat2 base_model: - Vision-CAIR/LongVU_Qwen2_7B_img model-index: - name: llava-onevision-qwen-7b-ov results: - task: type: multimodal dataset: name: EgoSchema type: egoschema metrics: - type: accuracy value: 67.6 name: accuracy verified: true - task: type: multimodal dataset: name: MLVU type: mlvu metrics: - type: accuracy value: 65.4 name: accuracy verified: true - task: type: multimodal dataset: name: MVBench type: mvbench metrics: - type: accuracy value: 66.9 name: accuracy verified: true - task: type: multimodal dataset: name: VideoMME type: videomme metrics: - type: accuracy value: 60.6 name: accuracy verified: true --- # LongVU Play with the model on the [HF demo](https://huggingface.co/spaces/Vision-CAIR/LongVU).
# Use We provide the simple generation process for using our model. For more details, you could refer to [Github](https://github.com/Vision-CAIR/LongVU) ```python # git clone https://github.com/Vision-CAIR/LongVU import numpy as np import torch from longvu.builder import load_pretrained_model from longvu.constants import ( DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX, ) from longvu.conversation import conv_templates, SeparatorStyle from longvu.mm_datautils import ( KeywordsStoppingCriteria, process_images, tokenizer_image_token, ) from decord import cpu, VideoReader tokenizer, model, image_processor, context_len = load_pretrained_model( "./checkpoints/longvu_qwen", None, "cambrian_qwen", ) model.eval() video_path = "./examples/video1.mp4" qs = "Describe this video in detail" vr = VideoReader(video_path, ctx=cpu(0), num_threads=1) fps = float(vr.get_avg_fps()) frame_indices = np.array([i for i in range(0, len(vr), round(fps),)]) video = [] for frame_index in frame_indices: img = vr[frame_index].asnumpy() video.append(img) video = np.stack(video) image_sizes = [video[0].shape[:2]] video = process_images(video, image_processor, model.config) video = [item.unsqueeze(0) for item in video] qs = DEFAULT_IMAGE_TOKEN + "\n" + qs conv = conv_templates["qwen"].copy() conv.append_message(conv.roles[0], qs) conv.append_message(conv.roles[1], None) prompt = conv.get_prompt() input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(model.device) stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 keywords = [stop_str] stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) with torch.inference_mode(): output_ids = model.generate( input_ids, images=video, image_sizes=image_sizes, do_sample=False, temperature=0.2, max_new_tokens=128, use_cache=True, stopping_criteria=[stopping_criteria], ) pred = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip() ``` ``` @misc{shen2024longvuspatiotemporaladaptivecompression, title={LongVU: Spatiotemporal Adaptive Compression for Long Video-Language Understanding}, author={Xiaoqian Shen and Yunyang Xiong and Changsheng Zhao and Lemeng Wu and Jun Chen and Chenchen Zhu and Zechun Liu and Fanyi Xiao and Balakrishnan Varadarajan and Florian Bordes and Zhuang Liu and Hu Xu and Hyunwoo J. Kim and Bilge Soran and Raghuraman Krishnamoorthi and Mohamed Elhoseiny and Vikas Chandra}, year={2024}, eprint={2410.17434}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2410.17434}, } ```