Commit
·
17c84df
1
Parent(s):
35a6601
Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +95 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: stable-baselines3
|
| 3 |
+
tags:
|
| 4 |
+
- PandaReachDense-v2
|
| 5 |
+
- deep-reinforcement-learning
|
| 6 |
+
- reinforcement-learning
|
| 7 |
+
- stable-baselines3
|
| 8 |
+
model-index:
|
| 9 |
+
- name: A2C
|
| 10 |
+
results:
|
| 11 |
+
- task:
|
| 12 |
+
type: reinforcement-learning
|
| 13 |
+
name: reinforcement-learning
|
| 14 |
+
dataset:
|
| 15 |
+
name: PandaReachDense-v2
|
| 16 |
+
type: PandaReachDense-v2
|
| 17 |
+
metrics:
|
| 18 |
+
- type: mean_reward
|
| 19 |
+
value: -3.91 +/- 0.99
|
| 20 |
+
name: mean_reward
|
| 21 |
+
verified: false
|
| 22 |
+
---
|
| 23 |
+
|
| 24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
| 25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
| 26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
| 27 |
+
|
| 28 |
+
## Usage (with Stable-baselines3)
|
| 29 |
+
TODO: Add your code
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
```python
|
| 33 |
+
from stable_baselines3 import ...
|
| 34 |
+
from huggingface_sb3 import load_from_hub
|
| 35 |
+
|
| 36 |
+
...
|
| 37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:59492285a5a414d105765597892449e31b39e02f34df7cbfc911dacaf7967972
|
| 3 |
+
size 108063
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
1.8.0
|
a2c-PandaReachDense-v2/data
ADDED
|
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"policy_class": {
|
| 3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
| 4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
| 5 |
+
"__module__": "stable_baselines3.common.policies",
|
| 6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
| 7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f1163a0a830>",
|
| 8 |
+
"__abstractmethods__": "frozenset()",
|
| 9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f1163a05f80>"
|
| 10 |
+
},
|
| 11 |
+
"verbose": 1,
|
| 12 |
+
"policy_kwargs": {
|
| 13 |
+
":type:": "<class 'dict'>",
|
| 14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
| 15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
| 16 |
+
"optimizer_kwargs": {
|
| 17 |
+
"alpha": 0.99,
|
| 18 |
+
"eps": 1e-05,
|
| 19 |
+
"weight_decay": 0
|
| 20 |
+
}
|
| 21 |
+
},
|
| 22 |
+
"num_timesteps": 1000000,
|
| 23 |
+
"_total_timesteps": 1000000,
|
| 24 |
+
"_num_timesteps_at_start": 0,
|
| 25 |
+
"seed": null,
|
| 26 |
+
"action_noise": null,
|
| 27 |
+
"start_time": 1686240037924805092,
|
| 28 |
+
"learning_rate": 0.0007,
|
| 29 |
+
"tensorboard_log": null,
|
| 30 |
+
"lr_schedule": {
|
| 31 |
+
":type:": "<class 'function'>",
|
| 32 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
| 33 |
+
},
|
| 34 |
+
"_last_obs": {
|
| 35 |
+
":type:": "<class 'collections.OrderedDict'>",
|
| 36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAkG/qPtTs+jzv9gY/kG/qPtTs+jzv9gY/kG/qPtTs+jzv9gY/kG/qPtTs+jzv9gY/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAPxatPstEQr8ApNA/GrnFP5rQCD8LM0a/VKH+vpEl+r4qwYA/X5Dav7I9wj8ZjUY/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACQb+o+1Oz6PO/2Bj/NiK26tgZUOwtBj7uQb+o+1Oz6PO/2Bj/NiK26tgZUOwtBj7uQb+o+1Oz6PO/2Bj/NiK26tgZUOwtBj7uQb+o+1Oz6PO/2Bj/NiK26tgZUOwtBj7uUaA5LBEsGhpRoEnSUUpR1Lg==",
|
| 37 |
+
"achieved_goal": "[[0.4578824 0.03063051 0.5272054 ]\n [0.4578824 0.03063051 0.5272054 ]\n [0.4578824 0.03063051 0.5272054 ]\n [0.4578824 0.03063051 0.5272054 ]]",
|
| 38 |
+
"desired_goal": "[[ 0.33806035 -0.7588622 1.6300049 ]\n [ 1.5447114 0.534433 -0.77421635]\n [-0.4973246 -0.48856786 1.0058949 ]\n [-1.7075309 1.5175078 0.7755905 ]]",
|
| 39 |
+
"observation": "[[ 0.4578824 0.03063051 0.5272054 -0.00132396 0.00323526 -0.00437177]\n [ 0.4578824 0.03063051 0.5272054 -0.00132396 0.00323526 -0.00437177]\n [ 0.4578824 0.03063051 0.5272054 -0.00132396 0.00323526 -0.00437177]\n [ 0.4578824 0.03063051 0.5272054 -0.00132396 0.00323526 -0.00437177]]"
|
| 40 |
+
},
|
| 41 |
+
"_last_episode_starts": {
|
| 42 |
+
":type:": "<class 'numpy.ndarray'>",
|
| 43 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
| 44 |
+
},
|
| 45 |
+
"_last_original_obs": {
|
| 46 |
+
":type:": "<class 'collections.OrderedDict'>",
|
| 47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAr8DHPQW5Vz2BY2I+cuFJveHBzz3SDJ49VbQnvY0997yQXgI+ojx6PWAzzL1yhkI+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
| 48 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
| 49 |
+
"desired_goal": "[[ 0.09753548 0.05266668 0.2210827 ]\n [-0.04928727 0.10144401 0.07717289]\n [-0.04094346 -0.03018072 0.12731385]\n [ 0.06109298 -0.09970737 0.189966 ]]",
|
| 50 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
| 51 |
+
},
|
| 52 |
+
"_episode_num": 0,
|
| 53 |
+
"use_sde": false,
|
| 54 |
+
"sde_sample_freq": -1,
|
| 55 |
+
"_current_progress_remaining": 0.0,
|
| 56 |
+
"_stats_window_size": 100,
|
| 57 |
+
"ep_info_buffer": {
|
| 58 |
+
":type:": "<class 'collections.deque'>",
|
| 59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI5X/yd+/oBMCUhpRSlIwBbJRLMowBdJRHQKahev4/NaB1fZQoaAZoCWgPQwjJrN7hdogCwJSGlFKUaBVLMmgWR0CmoR6FmFrVdX2UKGgGaAloD0MIVYmyt5QTB8CUhpRSlGgVSzJoFkdApqCdmrbQC3V9lChoBmgJaA9DCF2MgXUc/wLAlIaUUpRoFUsyaBZHQKagSLThHb11fZQoaAZoCWgPQwijeJW1TVEKwJSGlFKUaBVLMmgWR0CmomewcHW0dX2UKGgGaAloD0MIFva0w1/zEcCUhpRSlGgVSzJoFkdApqILRfF72XV9lChoBmgJaA9DCCBEMuTYugHAlIaUUpRoFUsyaBZHQKahiihWYF91fZQoaAZoCWgPQwgrFOl+TqEOwJSGlFKUaBVLMmgWR0CmoTT/yXlbdX2UKGgGaAloD0MITUusjEZ+AsCUhpRSlGgVSzJoFkdApqNB9y925nV9lChoBmgJaA9DCLA8SE+RAw/AlIaUUpRoFUsyaBZHQKai5XwsoUl1fZQoaAZoCWgPQwhGtYgoJo8HwJSGlFKUaBVLMmgWR0CmomRgRbr1dX2UKGgGaAloD0MIuFz92CRfDMCUhpRSlGgVSzJoFkdApqIP38GcF3V9lChoBmgJaA9DCC+mme51khDAlIaUUpRoFUsyaBZHQKakJf4REnd1fZQoaAZoCWgPQwgHexNDcnIGwJSGlFKUaBVLMmgWR0Cmo8p5eJHidX2UKGgGaAloD0MIwtoYO+EFBsCUhpRSlGgVSzJoFkdApqNJqh11XHV9lChoBmgJaA9DCErRyr3AzAPAlIaUUpRoFUsyaBZHQKai9QvYe1d1fZQoaAZoCWgPQwgOvcXDe+4GwJSGlFKUaBVLMmgWR0CmpQK9oN/fdX2UKGgGaAloD0MIiJy+nq/5EMCUhpRSlGgVSzJoFkdApqSmNm16V3V9lChoBmgJaA9DCELRPIBFfv+/lIaUUpRoFUsyaBZHQKakJO/L1VZ1fZQoaAZoCWgPQwibOLnfoWgQwJSGlFKUaBVLMmgWR0Cmo8++dsi0dX2UKGgGaAloD0MIndfYJaqXCsCUhpRSlGgVSzJoFkdApqXk56t1ZHV9lChoBmgJaA9DCBgJbTmXUhPAlIaUUpRoFUsyaBZHQKaliGiYb851fZQoaAZoCWgPQwiwV1hwP6AIwJSGlFKUaBVLMmgWR0CmpQdEb5uZdX2UKGgGaAloD0MIA3egTnn0BcCUhpRSlGgVSzJoFkdApqSyMir1d3V9lChoBmgJaA9DCDkqN1FL8xLAlIaUUpRoFUsyaBZHQKamxf0Eov11fZQoaAZoCWgPQwibkNYYdMIFwJSGlFKUaBVLMmgWR0Cmpmn5zo2XdX2UKGgGaAloD0MIrWnecYqOBcCUhpRSlGgVSzJoFkdApqXo9cKPXHV9lChoBmgJaA9DCFTiOsYVVwrAlIaUUpRoFUsyaBZHQKallFirksB1fZQoaAZoCWgPQwit/DIYI9IIwJSGlFKUaBVLMmgWR0CmqDl+d9UkdX2UKGgGaAloD0MIcyuE1VgiAsCUhpRSlGgVSzJoFkdApqfdtuUD+3V9lChoBmgJaA9DCAiPNo5Yaw/AlIaUUpRoFUsyaBZHQKanXS2H+Id1fZQoaAZoCWgPQwjSi9r9KgAQwJSGlFKUaBVLMmgWR0CmpwjIikftdX2UKGgGaAloD0MI+rMfKSLDA8CUhpRSlGgVSzJoFkdApqmrwvxpc3V9lChoBmgJaA9DCO1FtB1TlwjAlIaUUpRoFUsyaBZHQKapT/z8P4F1fZQoaAZoCWgPQwjACBoziXoEwJSGlFKUaBVLMmgWR0CmqM9pItlJdX2UKGgGaAloD0MIeJeL+E7MD8CUhpRSlGgVSzJoFkdApqh648U21nV9lChoBmgJaA9DCNVcbjDU0RHAlIaUUpRoFUsyaBZHQKarGXSjQAx1fZQoaAZoCWgPQwgaTwRxHi4CwJSGlFKUaBVLMmgWR0Cmqr2LP2PDdX2UKGgGaAloD0MInE6y1eWUA8CUhpRSlGgVSzJoFkdApqo9XLeQ+3V9lChoBmgJaA9DCNtQMc7fhAfAlIaUUpRoFUsyaBZHQKap6MjNY8x1fZQoaAZoCWgPQwg3HJYGftQGwJSGlFKUaBVLMmgWR0CmrIoicG1QdX2UKGgGaAloD0MIgIEgQIaOCMCUhpRSlGgVSzJoFkdApqwulj3Eh3V9lChoBmgJaA9DCFkWTPxR9AHAlIaUUpRoFUsyaBZHQKarriNsFdN1fZQoaAZoCWgPQwj+e/DapW0HwJSGlFKUaBVLMmgWR0Cmq1l4keIVdX2UKGgGaAloD0MIbY0IxsElBMCUhpRSlGgVSzJoFkdApq4afzz3AXV9lChoBmgJaA9DCJq0qbpHNhDAlIaUUpRoFUsyaBZHQKatvq/ub7V1fZQoaAZoCWgPQwgJUil2NE4RwJSGlFKUaBVLMmgWR0CmrT4yO7xvdX2UKGgGaAloD0MI8ghupGzxCMCUhpRSlGgVSzJoFkdApqzpzT4L1HV9lChoBmgJaA9DCCrgnudPGxPAlIaUUpRoFUsyaBZHQKavpzRx95R1fZQoaAZoCWgPQwiVu8/x0WIEwJSGlFKUaBVLMmgWR0Cmr0uWKMvRdX2UKGgGaAloD0MI+S6lLhnnCsCUhpRSlGgVSzJoFkdApq7LXJ5miHV9lChoBmgJaA9DCD4jERrBxgfAlIaUUpRoFUsyaBZHQKaud2ECeVd1fZQoaAZoCWgPQwhpHOp3YasQwJSGlFKUaBVLMmgWR0CmsSIJ7b+MdX2UKGgGaAloD0MIe9gLBWxHEMCUhpRSlGgVSzJoFkdAprDGLm6oVHV9lChoBmgJaA9DCIP26uOhjwjAlIaUUpRoFUsyaBZHQKawRZeRgZ11fZQoaAZoCWgPQwhRSghW1asQwJSGlFKUaBVLMmgWR0Cmr/Id+5OKdX2UKGgGaAloD0MIAmTo2EElD8CUhpRSlGgVSzJoFkdAprJSeGwiaHV9lChoBmgJaA9DCIi9UMB28ArAlIaUUpRoFUsyaBZHQKax9grH2h91fZQoaAZoCWgPQwgvwD46dYUEwJSGlFKUaBVLMmgWR0CmsXTkp7TldX2UKGgGaAloD0MIJTs2AvE6FcCUhpRSlGgVSzJoFkdAprEf5k9U0nV9lChoBmgJaA9DCCtR9pZyLhTAlIaUUpRoFUsyaBZHQKazMM0gr6N1fZQoaAZoCWgPQwhighq+hXUNwJSGlFKUaBVLMmgWR0CmstRiG34LdX2UKGgGaAloD0MItJCA0eXNCcCUhpRSlGgVSzJoFkdAprJTROUMX3V9lChoBmgJaA9DCFq8WBgiBw7AlIaUUpRoFUsyaBZHQKax/mwJPZZ1fZQoaAZoCWgPQwgvUb01sFUNwJSGlFKUaBVLMmgWR0CmtCCtaIN3dX2UKGgGaAloD0MIPYGwU6yaA8CUhpRSlGgVSzJoFkdAprPE274BWHV9lChoBmgJaA9DCGDJVSx+cxbAlIaUUpRoFUsyaBZHQKazQ5imVJN1fZQoaAZoCWgPQwiJfJdSl0wCwJSGlFKUaBVLMmgWR0Cmsu59mYjTdX2UKGgGaAloD0MIAU7v4v2YC8CUhpRSlGgVSzJoFkdAprUDbcoH9nV9lChoBmgJaA9DCO4iTFEujQjAlIaUUpRoFUsyaBZHQKa0pul41P51fZQoaAZoCWgPQwi37XvUXy8SwJSGlFKUaBVLMmgWR0CmtCXAmAskdX2UKGgGaAloD0MInIaowp/BBMCUhpRSlGgVSzJoFkdAprPQnjQzDXV9lChoBmgJaA9DCHztmSUBigjAlIaUUpRoFUsyaBZHQKa13SvTw2F1fZQoaAZoCWgPQwhLrfcb7XgUwJSGlFKUaBVLMmgWR0CmtYDQJHAidX2UKGgGaAloD0MIhSUeUDZFBsCUhpRSlGgVSzJoFkdAprT/t0FKTXV9lChoBmgJaA9DCIqT+x2KshLAlIaUUpRoFUsyaBZHQKa0qqGUOd51fZQoaAZoCWgPQwgVcM/zp30SwJSGlFKUaBVLMmgWR0CmtrcyN4qxdX2UKGgGaAloD0MIYd14d2QsBcCUhpRSlGgVSzJoFkdAprZas4ku6HV9lChoBmgJaA9DCPlp3JvfIBPAlIaUUpRoFUsyaBZHQKa12Xu3MIN1fZQoaAZoCWgPQwjpRIKpZtYFwJSGlFKUaBVLMmgWR0CmtYRYaHbidX2UKGgGaAloD0MIVBoxs8+jBcCUhpRSlGgVSzJoFkdApreY/qxC6nV9lChoBmgJaA9DCH2vITguYwzAlIaUUpRoFUsyaBZHQKa3PHWBjF11fZQoaAZoCWgPQwgurBvvjkwTwJSGlFKUaBVLMmgWR0CmtruerdWRdX2UKGgGaAloD0MIecpqup5YEcCUhpRSlGgVSzJoFkdAprZmjO9nLHV9lChoBmgJaA9DCBUaiGUzhw/AlIaUUpRoFUsyaBZHQKa4iDmr8zh1fZQoaAZoCWgPQwiHFW75SCoIwJSGlFKUaBVLMmgWR0CmuCwRwqAjdX2UKGgGaAloD0MIQ8ajVMITC8CUhpRSlGgVSzJoFkdApreq0BwMpnV9lChoBmgJaA9DCJ0tILQerhPAlIaUUpRoFUsyaBZHQKa3ViUgSvl1fZQoaAZoCWgPQwhhp1g1CBMPwJSGlFKUaBVLMmgWR0CmuV8E/0NCdX2UKGgGaAloD0MIoDU//tKyEMCUhpRSlGgVSzJoFkdAprkClvZRK3V9lChoBmgJaA9DCPkQVI1eTQjAlIaUUpRoFUsyaBZHQKa4gWldkax1fZQoaAZoCWgPQwj2QgHbwQgIwJSGlFKUaBVLMmgWR0CmuCxPfsNUdX2UKGgGaAloD0MIlWbzOAyGCsCUhpRSlGgVSzJoFkdAprpPHJcPfHV9lChoBmgJaA9DCDqVDABVXA3AlIaUUpRoFUsyaBZHQKa58vmozep1fZQoaAZoCWgPQwitinCTUeUEwJSGlFKUaBVLMmgWR0CmuXHpr1ujdX2UKGgGaAloD0MI7DGR0mw+BcCUhpRSlGgVSzJoFkdAprkdWEK3NXV9lChoBmgJaA9DCKsEi8OZHwXAlIaUUpRoFUsyaBZHQKa7InivPkd1fZQoaAZoCWgPQwhDOGbZk4AIwJSGlFKUaBVLMmgWR0CmusX5N47jdX2UKGgGaAloD0MIBFq6gm1kCsCUhpRSlGgVSzJoFkdAprpEy57PZHV9lChoBmgJaA9DCDoGZK93Hw/AlIaUUpRoFUsyaBZHQKa576pHZsd1ZS4="
|
| 60 |
+
},
|
| 61 |
+
"ep_success_buffer": {
|
| 62 |
+
":type:": "<class 'collections.deque'>",
|
| 63 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
| 64 |
+
},
|
| 65 |
+
"_n_updates": 50000,
|
| 66 |
+
"n_steps": 5,
|
| 67 |
+
"gamma": 0.99,
|
| 68 |
+
"gae_lambda": 1.0,
|
| 69 |
+
"ent_coef": 0.0,
|
| 70 |
+
"vf_coef": 0.5,
|
| 71 |
+
"max_grad_norm": 0.5,
|
| 72 |
+
"normalize_advantage": false,
|
| 73 |
+
"observation_space": {
|
| 74 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
| 75 |
+
":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
|
| 76 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
| 77 |
+
"_shape": null,
|
| 78 |
+
"dtype": null,
|
| 79 |
+
"_np_random": null
|
| 80 |
+
},
|
| 81 |
+
"action_space": {
|
| 82 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
| 83 |
+
":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
| 84 |
+
"dtype": "float32",
|
| 85 |
+
"_shape": [
|
| 86 |
+
3
|
| 87 |
+
],
|
| 88 |
+
"low": "[-1. -1. -1.]",
|
| 89 |
+
"high": "[1. 1. 1.]",
|
| 90 |
+
"bounded_below": "[ True True True]",
|
| 91 |
+
"bounded_above": "[ True True True]",
|
| 92 |
+
"_np_random": null
|
| 93 |
+
},
|
| 94 |
+
"n_envs": 4
|
| 95 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0762dacaf6f43812a9f038fa8108751137cf740553d44bd3398d8e4db9e0a1a0
|
| 3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3dbecd0ffc3f8cd4f5fbaf5643111636207ebd8329153e90fefb534f81616d94
|
| 3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
| 3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
| 2 |
+
- Python: 3.10.11
|
| 3 |
+
- Stable-Baselines3: 1.8.0
|
| 4 |
+
- PyTorch: 2.0.1+cu118
|
| 5 |
+
- GPU Enabled: True
|
| 6 |
+
- Numpy: 1.22.4
|
| 7 |
+
- Gym: 0.21.0
|
config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f1163a0a830>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f1163a05f80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686240037924805092, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAkG/qPtTs+jzv9gY/kG/qPtTs+jzv9gY/kG/qPtTs+jzv9gY/kG/qPtTs+jzv9gY/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAPxatPstEQr8ApNA/GrnFP5rQCD8LM0a/VKH+vpEl+r4qwYA/X5Dav7I9wj8ZjUY/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACQb+o+1Oz6PO/2Bj/NiK26tgZUOwtBj7uQb+o+1Oz6PO/2Bj/NiK26tgZUOwtBj7uQb+o+1Oz6PO/2Bj/NiK26tgZUOwtBj7uQb+o+1Oz6PO/2Bj/NiK26tgZUOwtBj7uUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.4578824 0.03063051 0.5272054 ]\n [0.4578824 0.03063051 0.5272054 ]\n [0.4578824 0.03063051 0.5272054 ]\n [0.4578824 0.03063051 0.5272054 ]]", "desired_goal": "[[ 0.33806035 -0.7588622 1.6300049 ]\n [ 1.5447114 0.534433 -0.77421635]\n [-0.4973246 -0.48856786 1.0058949 ]\n [-1.7075309 1.5175078 0.7755905 ]]", "observation": "[[ 0.4578824 0.03063051 0.5272054 -0.00132396 0.00323526 -0.00437177]\n [ 0.4578824 0.03063051 0.5272054 -0.00132396 0.00323526 -0.00437177]\n [ 0.4578824 0.03063051 0.5272054 -0.00132396 0.00323526 -0.00437177]\n [ 0.4578824 0.03063051 0.5272054 -0.00132396 0.00323526 -0.00437177]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAr8DHPQW5Vz2BY2I+cuFJveHBzz3SDJ49VbQnvY0997yQXgI+ojx6PWAzzL1yhkI+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.09753548 0.05266668 0.2210827 ]\n [-0.04928727 0.10144401 0.07717289]\n [-0.04094346 -0.03018072 0.12731385]\n [ 0.06109298 -0.09970737 0.189966 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI5X/yd+/oBMCUhpRSlIwBbJRLMowBdJRHQKahev4/NaB1fZQoaAZoCWgPQwjJrN7hdogCwJSGlFKUaBVLMmgWR0CmoR6FmFrVdX2UKGgGaAloD0MIVYmyt5QTB8CUhpRSlGgVSzJoFkdApqCdmrbQC3V9lChoBmgJaA9DCF2MgXUc/wLAlIaUUpRoFUsyaBZHQKagSLThHb11fZQoaAZoCWgPQwijeJW1TVEKwJSGlFKUaBVLMmgWR0CmomewcHW0dX2UKGgGaAloD0MIFva0w1/zEcCUhpRSlGgVSzJoFkdApqILRfF72XV9lChoBmgJaA9DCCBEMuTYugHAlIaUUpRoFUsyaBZHQKahiihWYF91fZQoaAZoCWgPQwgrFOl+TqEOwJSGlFKUaBVLMmgWR0CmoTT/yXlbdX2UKGgGaAloD0MITUusjEZ+AsCUhpRSlGgVSzJoFkdApqNB9y925nV9lChoBmgJaA9DCLA8SE+RAw/AlIaUUpRoFUsyaBZHQKai5XwsoUl1fZQoaAZoCWgPQwhGtYgoJo8HwJSGlFKUaBVLMmgWR0CmomRgRbr1dX2UKGgGaAloD0MIuFz92CRfDMCUhpRSlGgVSzJoFkdApqIP38GcF3V9lChoBmgJaA9DCC+mme51khDAlIaUUpRoFUsyaBZHQKakJf4REnd1fZQoaAZoCWgPQwgHexNDcnIGwJSGlFKUaBVLMmgWR0Cmo8p5eJHidX2UKGgGaAloD0MIwtoYO+EFBsCUhpRSlGgVSzJoFkdApqNJqh11XHV9lChoBmgJaA9DCErRyr3AzAPAlIaUUpRoFUsyaBZHQKai9QvYe1d1fZQoaAZoCWgPQwgOvcXDe+4GwJSGlFKUaBVLMmgWR0CmpQK9oN/fdX2UKGgGaAloD0MIiJy+nq/5EMCUhpRSlGgVSzJoFkdApqSmNm16V3V9lChoBmgJaA9DCELRPIBFfv+/lIaUUpRoFUsyaBZHQKakJO/L1VZ1fZQoaAZoCWgPQwibOLnfoWgQwJSGlFKUaBVLMmgWR0Cmo8++dsi0dX2UKGgGaAloD0MIndfYJaqXCsCUhpRSlGgVSzJoFkdApqXk56t1ZHV9lChoBmgJaA9DCBgJbTmXUhPAlIaUUpRoFUsyaBZHQKaliGiYb851fZQoaAZoCWgPQwiwV1hwP6AIwJSGlFKUaBVLMmgWR0CmpQdEb5uZdX2UKGgGaAloD0MIA3egTnn0BcCUhpRSlGgVSzJoFkdApqSyMir1d3V9lChoBmgJaA9DCDkqN1FL8xLAlIaUUpRoFUsyaBZHQKamxf0Eov11fZQoaAZoCWgPQwibkNYYdMIFwJSGlFKUaBVLMmgWR0Cmpmn5zo2XdX2UKGgGaAloD0MIrWnecYqOBcCUhpRSlGgVSzJoFkdApqXo9cKPXHV9lChoBmgJaA9DCFTiOsYVVwrAlIaUUpRoFUsyaBZHQKallFirksB1fZQoaAZoCWgPQwit/DIYI9IIwJSGlFKUaBVLMmgWR0CmqDl+d9UkdX2UKGgGaAloD0MIcyuE1VgiAsCUhpRSlGgVSzJoFkdApqfdtuUD+3V9lChoBmgJaA9DCAiPNo5Yaw/AlIaUUpRoFUsyaBZHQKanXS2H+Id1fZQoaAZoCWgPQwjSi9r9KgAQwJSGlFKUaBVLMmgWR0CmpwjIikftdX2UKGgGaAloD0MI+rMfKSLDA8CUhpRSlGgVSzJoFkdApqmrwvxpc3V9lChoBmgJaA9DCO1FtB1TlwjAlIaUUpRoFUsyaBZHQKapT/z8P4F1fZQoaAZoCWgPQwjACBoziXoEwJSGlFKUaBVLMmgWR0CmqM9pItlJdX2UKGgGaAloD0MIeJeL+E7MD8CUhpRSlGgVSzJoFkdApqh648U21nV9lChoBmgJaA9DCNVcbjDU0RHAlIaUUpRoFUsyaBZHQKarGXSjQAx1fZQoaAZoCWgPQwgaTwRxHi4CwJSGlFKUaBVLMmgWR0Cmqr2LP2PDdX2UKGgGaAloD0MInE6y1eWUA8CUhpRSlGgVSzJoFkdApqo9XLeQ+3V9lChoBmgJaA9DCNtQMc7fhAfAlIaUUpRoFUsyaBZHQKap6MjNY8x1fZQoaAZoCWgPQwg3HJYGftQGwJSGlFKUaBVLMmgWR0CmrIoicG1QdX2UKGgGaAloD0MIgIEgQIaOCMCUhpRSlGgVSzJoFkdApqwulj3Eh3V9lChoBmgJaA9DCFkWTPxR9AHAlIaUUpRoFUsyaBZHQKarriNsFdN1fZQoaAZoCWgPQwj+e/DapW0HwJSGlFKUaBVLMmgWR0Cmq1l4keIVdX2UKGgGaAloD0MIbY0IxsElBMCUhpRSlGgVSzJoFkdApq4afzz3AXV9lChoBmgJaA9DCJq0qbpHNhDAlIaUUpRoFUsyaBZHQKatvq/ub7V1fZQoaAZoCWgPQwgJUil2NE4RwJSGlFKUaBVLMmgWR0CmrT4yO7xvdX2UKGgGaAloD0MI8ghupGzxCMCUhpRSlGgVSzJoFkdApqzpzT4L1HV9lChoBmgJaA9DCCrgnudPGxPAlIaUUpRoFUsyaBZHQKavpzRx95R1fZQoaAZoCWgPQwiVu8/x0WIEwJSGlFKUaBVLMmgWR0Cmr0uWKMvRdX2UKGgGaAloD0MI+S6lLhnnCsCUhpRSlGgVSzJoFkdApq7LXJ5miHV9lChoBmgJaA9DCD4jERrBxgfAlIaUUpRoFUsyaBZHQKaud2ECeVd1fZQoaAZoCWgPQwhpHOp3YasQwJSGlFKUaBVLMmgWR0CmsSIJ7b+MdX2UKGgGaAloD0MIe9gLBWxHEMCUhpRSlGgVSzJoFkdAprDGLm6oVHV9lChoBmgJaA9DCIP26uOhjwjAlIaUUpRoFUsyaBZHQKawRZeRgZ11fZQoaAZoCWgPQwhRSghW1asQwJSGlFKUaBVLMmgWR0Cmr/Id+5OKdX2UKGgGaAloD0MIAmTo2EElD8CUhpRSlGgVSzJoFkdAprJSeGwiaHV9lChoBmgJaA9DCIi9UMB28ArAlIaUUpRoFUsyaBZHQKax9grH2h91fZQoaAZoCWgPQwgvwD46dYUEwJSGlFKUaBVLMmgWR0CmsXTkp7TldX2UKGgGaAloD0MIJTs2AvE6FcCUhpRSlGgVSzJoFkdAprEf5k9U0nV9lChoBmgJaA9DCCtR9pZyLhTAlIaUUpRoFUsyaBZHQKazMM0gr6N1fZQoaAZoCWgPQwhighq+hXUNwJSGlFKUaBVLMmgWR0CmstRiG34LdX2UKGgGaAloD0MItJCA0eXNCcCUhpRSlGgVSzJoFkdAprJTROUMX3V9lChoBmgJaA9DCFq8WBgiBw7AlIaUUpRoFUsyaBZHQKax/mwJPZZ1fZQoaAZoCWgPQwgvUb01sFUNwJSGlFKUaBVLMmgWR0CmtCCtaIN3dX2UKGgGaAloD0MIPYGwU6yaA8CUhpRSlGgVSzJoFkdAprPE274BWHV9lChoBmgJaA9DCGDJVSx+cxbAlIaUUpRoFUsyaBZHQKazQ5imVJN1fZQoaAZoCWgPQwiJfJdSl0wCwJSGlFKUaBVLMmgWR0Cmsu59mYjTdX2UKGgGaAloD0MIAU7v4v2YC8CUhpRSlGgVSzJoFkdAprUDbcoH9nV9lChoBmgJaA9DCO4iTFEujQjAlIaUUpRoFUsyaBZHQKa0pul41P51fZQoaAZoCWgPQwi37XvUXy8SwJSGlFKUaBVLMmgWR0CmtCXAmAskdX2UKGgGaAloD0MInIaowp/BBMCUhpRSlGgVSzJoFkdAprPQnjQzDXV9lChoBmgJaA9DCHztmSUBigjAlIaUUpRoFUsyaBZHQKa13SvTw2F1fZQoaAZoCWgPQwhLrfcb7XgUwJSGlFKUaBVLMmgWR0CmtYDQJHAidX2UKGgGaAloD0MIhSUeUDZFBsCUhpRSlGgVSzJoFkdAprT/t0FKTXV9lChoBmgJaA9DCIqT+x2KshLAlIaUUpRoFUsyaBZHQKa0qqGUOd51fZQoaAZoCWgPQwgVcM/zp30SwJSGlFKUaBVLMmgWR0CmtrcyN4qxdX2UKGgGaAloD0MIYd14d2QsBcCUhpRSlGgVSzJoFkdAprZas4ku6HV9lChoBmgJaA9DCPlp3JvfIBPAlIaUUpRoFUsyaBZHQKa12Xu3MIN1fZQoaAZoCWgPQwjpRIKpZtYFwJSGlFKUaBVLMmgWR0CmtYRYaHbidX2UKGgGaAloD0MIVBoxs8+jBcCUhpRSlGgVSzJoFkdApreY/qxC6nV9lChoBmgJaA9DCH2vITguYwzAlIaUUpRoFUsyaBZHQKa3PHWBjF11fZQoaAZoCWgPQwgurBvvjkwTwJSGlFKUaBVLMmgWR0CmtruerdWRdX2UKGgGaAloD0MIecpqup5YEcCUhpRSlGgVSzJoFkdAprZmjO9nLHV9lChoBmgJaA9DCBUaiGUzhw/AlIaUUpRoFUsyaBZHQKa4iDmr8zh1fZQoaAZoCWgPQwiHFW75SCoIwJSGlFKUaBVLMmgWR0CmuCwRwqAjdX2UKGgGaAloD0MIQ8ajVMITC8CUhpRSlGgVSzJoFkdApreq0BwMpnV9lChoBmgJaA9DCJ0tILQerhPAlIaUUpRoFUsyaBZHQKa3ViUgSvl1fZQoaAZoCWgPQwhhp1g1CBMPwJSGlFKUaBVLMmgWR0CmuV8E/0NCdX2UKGgGaAloD0MIoDU//tKyEMCUhpRSlGgVSzJoFkdAprkClvZRK3V9lChoBmgJaA9DCPkQVI1eTQjAlIaUUpRoFUsyaBZHQKa4gWldkax1fZQoaAZoCWgPQwj2QgHbwQgIwJSGlFKUaBVLMmgWR0CmuCxPfsNUdX2UKGgGaAloD0MIlWbzOAyGCsCUhpRSlGgVSzJoFkdAprpPHJcPfHV9lChoBmgJaA9DCDqVDABVXA3AlIaUUpRoFUsyaBZHQKa58vmozep1fZQoaAZoCWgPQwitinCTUeUEwJSGlFKUaBVLMmgWR0CmuXHpr1ujdX2UKGgGaAloD0MI7DGR0mw+BcCUhpRSlGgVSzJoFkdAprkdWEK3NXV9lChoBmgJaA9DCKsEi8OZHwXAlIaUUpRoFUsyaBZHQKa7InivPkd1fZQoaAZoCWgPQwhDOGbZk4AIwJSGlFKUaBVLMmgWR0CmusX5N47jdX2UKGgGaAloD0MIBFq6gm1kCsCUhpRSlGgVSzJoFkdAprpEy57PZHV9lChoBmgJaA9DCDoGZK93Hw/AlIaUUpRoFUsyaBZHQKa576pHZsd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
|
Binary file (814 kB). View file
|
|
|
results.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"mean_reward": -3.907260116096586, "std_reward": 0.991313731777751, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-08T16:53:19.470725"}
|
vec_normalize.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c7b8cb8571670bed7bdd79d0774d406e32c7b02c3f375743d155dd8eebd3a116
|
| 3 |
+
size 2387
|