VaggP commited on
Commit
e33262d
1 Parent(s): 64cd9cc

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,305 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: sentence-transformers
3
+ pipeline_tag: sentence-similarity
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - generated_from_trainer
9
+ - dataset_size:1
10
+ - loss:CosineSimilarityLoss
11
+ ---
12
+
13
+ # SentenceTransformer
14
+
15
+ This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
16
+
17
+ ## Model Details
18
+
19
+ ### Model Description
20
+ - **Model Type:** Sentence Transformer
21
+ <!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
22
+ - **Maximum Sequence Length:** 384 tokens
23
+ - **Output Dimensionality:** 768 tokens
24
+ - **Similarity Function:** Cosine Similarity
25
+ <!-- - **Training Dataset:** Unknown -->
26
+ <!-- - **Language:** Unknown -->
27
+ <!-- - **License:** Unknown -->
28
+
29
+ ### Model Sources
30
+
31
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
32
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
33
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
34
+
35
+ ### Full Model Architecture
36
+
37
+ ```
38
+ SentenceTransformer(
39
+ (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
40
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
41
+ (2): Normalize()
42
+ )
43
+ ```
44
+
45
+ ## Usage
46
+
47
+ ### Direct Usage (Sentence Transformers)
48
+
49
+ First install the Sentence Transformers library:
50
+
51
+ ```bash
52
+ pip install -U sentence-transformers
53
+ ```
54
+
55
+ Then you can load this model and run inference.
56
+ ```python
57
+ from sentence_transformers import SentenceTransformer
58
+
59
+ # Download from the 🤗 Hub
60
+ model = SentenceTransformer("VaggP/fine-tuned-mpnet-base")
61
+ # Run inference
62
+ sentences = [
63
+ 'The weather is lovely today.',
64
+ "It's so sunny outside!",
65
+ 'He drove to the stadium.',
66
+ ]
67
+ embeddings = model.encode(sentences)
68
+ print(embeddings.shape)
69
+ # [3, 768]
70
+
71
+ # Get the similarity scores for the embeddings
72
+ similarities = model.similarity(embeddings, embeddings)
73
+ print(similarities.shape)
74
+ # [3, 3]
75
+ ```
76
+
77
+ <!--
78
+ ### Direct Usage (Transformers)
79
+
80
+ <details><summary>Click to see the direct usage in Transformers</summary>
81
+
82
+ </details>
83
+ -->
84
+
85
+ <!--
86
+ ### Downstream Usage (Sentence Transformers)
87
+
88
+ You can finetune this model on your own dataset.
89
+
90
+ <details><summary>Click to expand</summary>
91
+
92
+ </details>
93
+ -->
94
+
95
+ <!--
96
+ ### Out-of-Scope Use
97
+
98
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
99
+ -->
100
+
101
+ <!--
102
+ ## Bias, Risks and Limitations
103
+
104
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
105
+ -->
106
+
107
+ <!--
108
+ ### Recommendations
109
+
110
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
111
+ -->
112
+
113
+ ## Training Details
114
+
115
+ ### Training Dataset
116
+
117
+ #### Unnamed Dataset
118
+
119
+
120
+ * Size: 1 training samples
121
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
122
+ * Approximate statistics based on the first 1 samples:
123
+ | | sentence_0 | sentence_1 | label |
124
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------|
125
+ | type | string | string | float |
126
+ | details | <ul><li>min: 42 tokens</li><li>mean: 42.0 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 14.0 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>min: 1.0</li><li>mean: 1.0</li><li>max: 1.0</li></ul> |
127
+ * Samples:
128
+ | sentence_0 | sentence_1 | label |
129
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------|:-----------------|
130
+ | <code> The misconception was failing to apply the correct order of operations (BIDMAS/PEMDAS), specifically not recognizing the need to group terms with addition before applying multiplication and subtraction.</code> | <code>Confuses the order of operations, believes addition comes before multiplication </code> | <code>1.0</code> |
131
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
132
+ ```json
133
+ {
134
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
135
+ }
136
+ ```
137
+
138
+ ### Training Hyperparameters
139
+ #### Non-Default Hyperparameters
140
+
141
+ - `per_device_train_batch_size`: 16
142
+ - `per_device_eval_batch_size`: 16
143
+ - `multi_dataset_batch_sampler`: round_robin
144
+
145
+ #### All Hyperparameters
146
+ <details><summary>Click to expand</summary>
147
+
148
+ - `overwrite_output_dir`: False
149
+ - `do_predict`: False
150
+ - `eval_strategy`: no
151
+ - `prediction_loss_only`: True
152
+ - `per_device_train_batch_size`: 16
153
+ - `per_device_eval_batch_size`: 16
154
+ - `per_gpu_train_batch_size`: None
155
+ - `per_gpu_eval_batch_size`: None
156
+ - `gradient_accumulation_steps`: 1
157
+ - `eval_accumulation_steps`: None
158
+ - `torch_empty_cache_steps`: None
159
+ - `learning_rate`: 5e-05
160
+ - `weight_decay`: 0.0
161
+ - `adam_beta1`: 0.9
162
+ - `adam_beta2`: 0.999
163
+ - `adam_epsilon`: 1e-08
164
+ - `max_grad_norm`: 1
165
+ - `num_train_epochs`: 3
166
+ - `max_steps`: -1
167
+ - `lr_scheduler_type`: linear
168
+ - `lr_scheduler_kwargs`: {}
169
+ - `warmup_ratio`: 0.0
170
+ - `warmup_steps`: 0
171
+ - `log_level`: passive
172
+ - `log_level_replica`: warning
173
+ - `log_on_each_node`: True
174
+ - `logging_nan_inf_filter`: True
175
+ - `save_safetensors`: True
176
+ - `save_on_each_node`: False
177
+ - `save_only_model`: False
178
+ - `restore_callback_states_from_checkpoint`: False
179
+ - `no_cuda`: False
180
+ - `use_cpu`: False
181
+ - `use_mps_device`: False
182
+ - `seed`: 42
183
+ - `data_seed`: None
184
+ - `jit_mode_eval`: False
185
+ - `use_ipex`: False
186
+ - `bf16`: False
187
+ - `fp16`: False
188
+ - `fp16_opt_level`: O1
189
+ - `half_precision_backend`: auto
190
+ - `bf16_full_eval`: False
191
+ - `fp16_full_eval`: False
192
+ - `tf32`: None
193
+ - `local_rank`: 0
194
+ - `ddp_backend`: None
195
+ - `tpu_num_cores`: None
196
+ - `tpu_metrics_debug`: False
197
+ - `debug`: []
198
+ - `dataloader_drop_last`: False
199
+ - `dataloader_num_workers`: 0
200
+ - `dataloader_prefetch_factor`: None
201
+ - `past_index`: -1
202
+ - `disable_tqdm`: False
203
+ - `remove_unused_columns`: True
204
+ - `label_names`: None
205
+ - `load_best_model_at_end`: False
206
+ - `ignore_data_skip`: False
207
+ - `fsdp`: []
208
+ - `fsdp_min_num_params`: 0
209
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
210
+ - `fsdp_transformer_layer_cls_to_wrap`: None
211
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
212
+ - `deepspeed`: None
213
+ - `label_smoothing_factor`: 0.0
214
+ - `optim`: adamw_torch
215
+ - `optim_args`: None
216
+ - `adafactor`: False
217
+ - `group_by_length`: False
218
+ - `length_column_name`: length
219
+ - `ddp_find_unused_parameters`: None
220
+ - `ddp_bucket_cap_mb`: None
221
+ - `ddp_broadcast_buffers`: False
222
+ - `dataloader_pin_memory`: True
223
+ - `dataloader_persistent_workers`: False
224
+ - `skip_memory_metrics`: True
225
+ - `use_legacy_prediction_loop`: False
226
+ - `push_to_hub`: False
227
+ - `resume_from_checkpoint`: None
228
+ - `hub_model_id`: None
229
+ - `hub_strategy`: every_save
230
+ - `hub_private_repo`: False
231
+ - `hub_always_push`: False
232
+ - `gradient_checkpointing`: False
233
+ - `gradient_checkpointing_kwargs`: None
234
+ - `include_inputs_for_metrics`: False
235
+ - `eval_do_concat_batches`: True
236
+ - `fp16_backend`: auto
237
+ - `push_to_hub_model_id`: None
238
+ - `push_to_hub_organization`: None
239
+ - `mp_parameters`:
240
+ - `auto_find_batch_size`: False
241
+ - `full_determinism`: False
242
+ - `torchdynamo`: None
243
+ - `ray_scope`: last
244
+ - `ddp_timeout`: 1800
245
+ - `torch_compile`: False
246
+ - `torch_compile_backend`: None
247
+ - `torch_compile_mode`: None
248
+ - `dispatch_batches`: None
249
+ - `split_batches`: None
250
+ - `include_tokens_per_second`: False
251
+ - `include_num_input_tokens_seen`: False
252
+ - `neftune_noise_alpha`: None
253
+ - `optim_target_modules`: None
254
+ - `batch_eval_metrics`: False
255
+ - `eval_on_start`: False
256
+ - `use_liger_kernel`: False
257
+ - `eval_use_gather_object`: False
258
+ - `batch_sampler`: batch_sampler
259
+ - `multi_dataset_batch_sampler`: round_robin
260
+
261
+ </details>
262
+
263
+ ### Framework Versions
264
+ - Python: 3.10.14
265
+ - Sentence Transformers: 3.2.0
266
+ - Transformers: 4.45.1
267
+ - PyTorch: 2.4.0+cpu
268
+ - Accelerate: 0.34.2
269
+ - Datasets: 3.0.1
270
+ - Tokenizers: 0.20.0
271
+
272
+ ## Citation
273
+
274
+ ### BibTeX
275
+
276
+ #### Sentence Transformers
277
+ ```bibtex
278
+ @inproceedings{reimers-2019-sentence-bert,
279
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
280
+ author = "Reimers, Nils and Gurevych, Iryna",
281
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
282
+ month = "11",
283
+ year = "2019",
284
+ publisher = "Association for Computational Linguistics",
285
+ url = "https://arxiv.org/abs/1908.10084",
286
+ }
287
+ ```
288
+
289
+ <!--
290
+ ## Glossary
291
+
292
+ *Clearly define terms in order to be accessible across audiences.*
293
+ -->
294
+
295
+ <!--
296
+ ## Model Card Authors
297
+
298
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
299
+ -->
300
+
301
+ <!--
302
+ ## Model Card Contact
303
+
304
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
305
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/kaggle/input/embeddings-encoder/all-mpnet-base-v2",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.45.1",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.2.0",
4
+ "transformers": "4.45.1",
5
+ "pytorch": "2.4.0+cpu"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:daff6696d914c1e0dc13c9c144b5213c870a01fa18d023fae80bb00f1ac172c3
3
+ size 437967672
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 384,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": false,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "mask_token": "<mask>",
58
+ "max_length": 128,
59
+ "model_max_length": 384,
60
+ "pad_to_multiple_of": null,
61
+ "pad_token": "<pad>",
62
+ "pad_token_type_id": 0,
63
+ "padding_side": "right",
64
+ "sep_token": "</s>",
65
+ "stride": 0,
66
+ "strip_accents": null,
67
+ "tokenize_chinese_chars": true,
68
+ "tokenizer_class": "MPNetTokenizer",
69
+ "truncation_side": "right",
70
+ "truncation_strategy": "longest_first",
71
+ "unk_token": "[UNK]"
72
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff