VBoussot commited on
Commit
f315bc9
·
verified ·
1 Parent(s): e00ba49

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -8
README.md CHANGED
@@ -39,16 +39,17 @@ Each model provides multiple feature extraction layers, which can be selected in
39
 
40
  In addition, the repository also includes:
41
 
42
- - **MIND** — A handcrafted Modality Independent Neighborhood Descriptor, wrapped in TorchScript
43
 
44
 
45
- | Model | Specialization | Paper / Reference | Field of View | License |
46
- |----------------|----------------------------------------|-------------------------------------------------------------|------------------------|--------------|
47
- | **MIND** | Handcrafted descriptor | [Heinrich et al., 2012](https://doi.org/10.1016/j.media.2012.05.008) | `2r + 1` | Research only |
48
- | **SAM2.1** | General segmentation (natural images) | [Ravi et al., 2023](https://arxiv.org/abs/2408.00714) | 29 | MIT |
49
- | **TS Models** | Multi-resolution CT/MRI segmentation | [Wasserthal et al., 2022](https://arxiv.org/abs/2208.05868) | `2^l + 3` | Apache 2.0 |
50
- | **Anatomix** | Anatomy-aware transformer encoder | [Dey et al., 2024](https://arxiv.org/abs/2411.02372) | Hierarchical | MIT |
51
- | **DINOv2** | Self-supervised vision transformer | [Oquab et al., 2023](https://arxiv.org/abs/2304.07193) | Global / ViT-Base | MIT |
 
52
 
53
  ---
54
 
 
39
 
40
  In addition, the repository also includes:
41
 
42
+ - **MIND** — A handcrafted descriptor, wrapped in TorchScript
43
 
44
 
45
+ | Model | Specialization | Paper / Reference | Field of View | License | Preprocessing |
46
+ |----------------|---------------------------------------|-------------------------------------------------------------|------------------------|--------------|---------------|
47
+ | **MIND** | Handcrafted descriptor | [Heinrich et al., 2012](https://doi.org/10.1016/j.media.2012.05.008) | `2*r*d + 1` (r: radius, d: dilation) | Apache 2.0 | None |
48
+ | **SAM2.1** | General segmentation (natural images) | [Ravi et al., 2023](https://arxiv.org/abs/2408.00714) | 29 | Apache 2.0 | Normalize intensities to [0, 1], then standardize with mean 0.485 and std 0.229 |
49
+ | **TS Models** | CT/MRI segmentation | [Wasserthal et al., 2022](https://arxiv.org/abs/2208.05868) | `2^l + 3` (l: layer number) | Apache 2.0 | Canonical orientation for all models. For MRI models (e.g., TS/M730–M733), standardize intensities to zero mean and unit variance. For CT models (e.g., TS/M258, TS/M291), clip intensities to [-1024, 276] HU, then normalize by centering at -370 HU and scaling by 436.6.|
50
+ | **Anatomix** | Anatomy-aware transformer encoder | [Dey et al., 2024](https://arxiv.org/abs/2411.02372) | Global(Static mode) | MIT | Normalize intensities to [0, 1] |
51
+ | **DINOv2** | Self-supervised vision transformer | [Oquab et al., 2023](https://arxiv.org/abs/2304.07193) | 14 | Apache 2.0 | Normalize intensities to [0, 1], then standardize with mean 0.485 and std 0.229 |
52
+
53
 
54
  ---
55