--- license: mit tags: - generated_from_trainer base_model: facebook/w2v-bert-2.0 datasets: - common_voice_17_0 metrics: - wer model-index: - name: w2v2-bert-urdu results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: common_voice_17_0 type: common_voice_17_0 config: ur split: test[:100] args: ur metrics: - type: wer value: 0.6273224043715847 name: Wer --- # w2v2-bert-urdu This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the common_voice_17_0 dataset. It achieves the following results on the evaluation set: - Loss: 1.1498 - Wer: 0.6273 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 3.5968 | 0.1695 | 50 | 3.1737 | 1.0 | | 3.1414 | 0.3390 | 100 | 2.9666 | 1.0 | | 2.3694 | 0.5085 | 150 | 1.0788 | 0.6525 | | 0.7692 | 0.6780 | 200 | 0.5647 | 0.4186 | | 0.5488 | 0.8475 | 250 | 0.4491 | 0.3486 | | 0.5568 | 1.0169 | 300 | 0.5883 | 0.7388 | | 0.7925 | 1.1864 | 350 | 1.0338 | 0.7967 | | 1.4791 | 1.3559 | 400 | 1.1474 | 0.6251 | | 1.2758 | 1.5254 | 450 | 1.1359 | 0.6251 | | 1.2763 | 1.6949 | 500 | 1.1497 | 0.6273 | | 1.2789 | 1.8644 | 550 | 1.1498 | 0.6273 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1