--- license: mit base_model: UmarRamzan/w2v2-bert-urdu tags: - generated_from_trainer metrics: - wer model-index: - name: w2v2-bert-urdu results: [] language: - ur --- # Wav2Vec-Bert-2.0-Urdu This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the Urdu split of the [Common Voice 17](https://huggingface.co/datasets/mozilla-foundation/common_voice_17_0) dataset. It achieves the following results on the evaluation set: - Loss: 0.3681 - Wer: 0.2929 ## Model description ## Usage Instructions ```python from transformers import AutoFeatureExtractor, Wav2Vec2BertModel import torch from datasets import load_dataset dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation") dataset = dataset.sort("id") sampling_rate = dataset.features["audio"].sampling_rate processor = AutoProcessor.from_pretrained("UmarRamzan/w2v2-bert-urdu") model = Wav2Vec2BertModel.from_pretrained("UmarRamzan/w2v2-bert-urdu") # audio file is decoded on the fly inputs = processor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 0.4362 | 0.1695 | 50 | 0.4144 | 0.3213 | | 0.3776 | 0.3390 | 100 | 0.4029 | 0.3137 | | 0.3918 | 0.5085 | 150 | 0.4095 | 0.3060 | | 0.3968 | 0.6780 | 200 | 0.3961 | 0.3060 | | 0.3685 | 0.8475 | 250 | 0.3681 | 0.2929 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1