---
tags:
- cs
pipeline_tag: fill-mask
---
# CZERT
This repository keeps Czert-A model for the paper [Czert – Czech BERT-like Model for Language Representation
](https://arxiv.org/abs/2103.13031)
For more information, see the paper
## Available Models
You can download **MLM & NSP only** pretrained models
~~[CZERT-A-v1](https://air.kiv.zcu.cz/public/CZERT-A-czert-albert-base-uncased.zip)
[CZERT-B-v1](https://air.kiv.zcu.cz/public/CZERT-B-czert-bert-base-cased.zip)~~
After some additional experiments, we found out that the tokenizers config was exported wrongly. In Czert-B-v1, the tokenizer parameter "do_lower_case" was wrongly set to true. In Czert-A-v1 the parameter "strip_accents" was incorrectly set to true.
Both mistakes are repaired in v2.
[CZERT-A-v2](https://air.kiv.zcu.cz/public/CZERT-A-v2-czert-albert-base-uncased.zip)
[CZERT-B-v2](https://air.kiv.zcu.cz/public/CZERT-B-v2-czert-bert-base-cased.zip)
or choose from one of **Finetuned Models**
| | Models |
| - | - |
| Sentiment Classification
(Facebook or CSFD) | [CZERT-A-sentiment-FB](https://air.kiv.zcu.cz/public/CZERT-A_fb.zip)
[CZERT-B-sentiment-FB](https://air.kiv.zcu.cz/public/CZERT-B_fb.zip)
[CZERT-A-sentiment-CSFD](https://air.kiv.zcu.cz/public/CZERT-A_csfd.zip)
[CZERT-B-sentiment-CSFD](https://air.kiv.zcu.cz/public/CZERT-B_csfd.zip) | Semantic Text Similarity
(Czech News Agency) | [CZERT-A-sts-CNA](https://air.kiv.zcu.cz/public/CZERT-A-sts-CNA.zip)
[CZERT-B-sts-CNA](https://air.kiv.zcu.cz/public/CZERT-B-sts-CNA.zip)
| Named Entity Recognition | [CZERT-A-ner-CNEC](https://air.kiv.zcu.cz/public/CZERT-A-ner-CNEC-cased.zip)
[CZERT-B-ner-CNEC](https://air.kiv.zcu.cz/public/CZERT-B-ner-CNEC-cased.zip)
[PAV-ner-CNEC](https://air.kiv.zcu.cz/public/PAV-ner-CNEC-cased.zip)
[CZERT-A-ner-BSNLP](https://air.kiv.zcu.cz/public/CZERT-A-ner-BSNLP-cased.zip)
[CZERT-B-ner-BSNLP](https://air.kiv.zcu.cz/public/CZERT-B-ner-BSNLP-cased.zip)
[PAV-ner-BSNLP](https://air.kiv.zcu.cz/public/PAV-ner-BSNLP-cased.zip) |
| Morphological Tagging
| [CZERT-A-morphtag-126k](https://air.kiv.zcu.cz/public/CZERT-A-morphtag-126k-cased.zip)
[CZERT-B-morphtag-126k](https://air.kiv.zcu.cz/public/CZERT-B-morphtag-126k-cased.zip) |
| Semantic Role Labelling |[CZERT-A-srl](https://air.kiv.zcu.cz/public/CZERT-A-srl-cased.zip)
[CZERT-B-srl](https://air.kiv.zcu.cz/public/CZERT-B-srl-cased.zip) |
## How to Use CZERT?
### Sentence Level Tasks
We evaluate our model on two sentence level tasks:
* Sentiment Classification,
* Semantic Text Similarity.
\t
### Document Level Tasks
We evaluate our model on one document level task
* Multi-label Document Classification.
### Token Level Tasks
We evaluate our model on three token level tasks:
* Named Entity Recognition,
* Morphological Tagging,
* Semantic Role Labelling.
## Downstream Tasks Fine-tuning Results
### Sentiment Classification
| | mBERT | SlavicBERT | ALBERT-r | Czert-A | Czert-B |
|:----:|:------------------------:|:------------------------:|:------------------------:|:-----------------------:|:--------------------------------:|
| FB | 71.72 ± 0.91 | 73.87 ± 0.50 | 59.50 ± 0.47 | 72.47 ± 0.72 | **76.55** ± **0.14** |
| CSFD | 82.80 ± 0.14 | 82.51 ± 0.14 | 75.40 ± 0.18 | 79.58 ± 0.46 | **84.79** ± **0.26** |
Average F1 results for the Sentiment Classification task. For more information, see [the paper](https://arxiv.org/abs/2103.13031).
### Semantic Text Similarity
| | **mBERT** | **Pavlov** | **Albert-random** | **Czert-A** | **Czert-B** |
|:-------------|:--------------:|:--------------:|:-----------------:|:--------------:|:----------------------:|
| STA-CNA | 83.335 ± 0.063 | 83.593 ± 0.050 | 43.184 ± 0.125 | 82.942 ± 0.106 | **84.345** ± **0.028** |
| STS-SVOB-img | 79.367 ± 0.486 | 79.900 ± 0.810 | 15.739 ± 2.992 | 79.444 ± 0.338 | **83.744** ± **0.395** |
| STS-SVOB-hl | 78.833 ± 0.296 | 76.996 ± 0.305 | 33.949 ± 1.807 | 75.089 ± 0.806 | **79.827 ± 0.469** |
Comparison of Pearson correlation achieved using pre-trained CZERT-A, CZERT-B, mBERT, Pavlov and randomly initialised Albert on semantic text similarity. For more information see [the paper](https://arxiv.org/abs/2103.13031).
### Multi-label Document Classification
| | mBERT | SlavicBERT | ALBERT-r | Czert-A | Czert-B |
|:-----:|:------------:|:------------:|:------------:|:------------:|:-------------------:|
| AUROC | 97.62 ± 0.08 | 97.80 ± 0.06 | 94.35 ± 0.13 | 97.49 ± 0.07 | **98.00** ± **0.04** |
| F1 | 83.04 ± 0.16 | 84.08 ± 0.14 | 72.44 ± 0.22 | 82.27 ± 0.17 | **85.06** ± **0.11** |
Comparison of F1 and AUROC score achieved using pre-trained CZERT-A, CZERT-B, mBERT, Pavlov and randomly initialised Albert on multi-label document classification. For more information see [the paper](https://arxiv.org/abs/2103.13031).
### Morphological Tagging
| | mBERT | Pavlov | Albert-random | Czert-A | Czert-B |
|:-----------------------|:---------------|:---------------|:---------------|:---------------|:---------------|
| Universal Dependencies | 99.176 ± 0.006 | 99.211 ± 0.008 | 96.590 ± 0.096 | 98.713 ± 0.008 | **99.300 ± 0.009** |
Comparison of F1 score achieved using pre-trained CZERT-A, CZERT-B, mBERT, Pavlov and randomly initialised Albert on morphological tagging task. For more information see [the paper](https://arxiv.org/abs/2103.13031).
### Semantic Role Labelling