--- license: apache-2.0 ---

Chimera: Improving Generalist Model with
Domain-Specific Experts

[[ Paper ]](https://huggingface.co/papers/2412.05983) [[ Website ]](https://unimodal4reasoning.github.io/chimera_page/) [[ Dataset🤗 ]]() [[ Github ]](https://github.com/UniModal4Reasoning/Chimera)
## 🛠️ Installation - Clone this repository: ```bash git clone https://github.com/UniModal4Reasoning/Chimera.git ``` - Create a conda virtual environment and activate it: ```bash conda create -n chimera python=3.9 -y conda activate chimera ``` - Install dependencies using `requirements.txt`: ```bash pip install -r requirements.txt ``` - Install other requirements: ```bash cd chimera/ pip install --upgrade pip # enable PEP 660 support pip install -e . ``` ### Additional Instructions - Install `flash-attn==2.3.4`: ```bash pip install flash-attn==2.3.4 --no-build-isolation ``` Alternatively you can compile from source: ```bash git clone https://github.com/Dao-AILab/flash-attention.git cd flash-attention git checkout v2.3.4 python setup.py install ``` ## Quick Start ### Multi-modal reasoning ```python from chimera.chimera_infer import Chimera4easyuse import torch from PIL import Image # prepare model # model_path = "U4R/Chimera-Reasoner-2B" # model_path = "U4R/Chimera-Reasoner-4B" model_path = "U4R/Chimera-Reasoner-8B" generation_config = dict(max_new_tokens=256, do_sample=False) model = Chimera4easyuse(model_path, dtype = torch.bfloat16, generation_config= generation_config) # prepare input image_path = "path/to/image" user_prompt = "\nuser prompt" input_image = Image.open(image_path).convert('RGB') response = model.get_response(user_prompt, [input_image]) print(response) ``` ### Visual content extraction ```python from chimera.chimera_infer import Chimera4easyuse import torch from PIL import Image # prepare model model_path = "U4R/Chimera-Extractor-1B" generation_config = dict(max_new_tokens=4096, do_sample=False, no_repeat_ngram_size = 20) model = Chimera4easyuse(model_path, dtype = torch.float16, generation_config= generation_config) # prepare input image_path = "path/to/document" user_prompt = "\nAs a smart PDF to Markdown conversion tool, please convert the content of the provided PDF into Markdown format." input_image = Image.open(image_path).convert('RGB') response = model.get_response(user_prompt, [input_image]) print(response) ``` ## License Chimera is released under the [Apache License 2.0](LICENSE) ## Citation If you find our models / code / papers useful in your research, please consider giving ⭐ and citations 📝, thx :) ```bibtex @misc{peng2024chimeraimprovinggeneralistmodel, title={Chimera: Improving Generalist Model with Domain-Specific Experts}, author={Tianshuo Peng and Mingsheng Li and Hongbin Zhou and Renqiu Xia and Renrui Zhang and Lei Bai and Song Mao and Bin Wang and Conghui He and Aojun Zhou and Botian Shi and Tao Chen and Bo Zhang and Xiangyu Yue}, year={2024}, eprint={2412.05983}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2412.05983}, } ``` ## Contact Us If you encounter any issues or have questions, please feel free to contact us via bo.zhangzx@gmail.com or zhangbo@pjlab.org.cn.