--- license: mit language: - en pipeline_tag: document-question-answering --- This model trained on DocVQA Dataset on sample of 15000 questions ``` from transformers import AutoTokenizer, AutoModelForDocumentQuestionAnswering from datasets import load_dataset model_checkpoint = "TusharGoel/LayoutLM-Finetuned-DocVQA" tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, add_prefix_space=True) model_predict = AutoModelForDocumentQuestionAnswering.from_pretrained(model_checkpoint) model_predict.eval() dataset = load_dataset("nielsr/funsd", split="train") example = dataset[0] question = "What's Licensee Number?" words = example["words"] boxes = example["bboxes"] encoding = tokenizer(question.split(), words, is_split_into_words=True, return_token_type_ids=True, return_tensors="pt") bbox = [] for i, s, w in zip(encoding.input_ids[0], encoding.sequence_ids(0), encoding.word_ids(0)): if s == 1: bbox.append(boxes[w]) elif i == tokenizer.sep_token_id: bbox.append([1000] * 4) else: bbox.append([0] * 4) encoding["bbox"] = torch.tensor([bbox]) word_ids = encoding.word_ids(0) outputs = model_predict(**encoding) loss = outputs.loss start_scores = outputs.start_logits end_scores = outputs.end_logits start, end = word_ids[start_scores.argmax(-1).item()], word_ids[end_scores.argmax(-1).item()] print(" ".join(words[start : end + 1])) ```