--- license: apache-2.0 base_model: bert-large-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: bert-large-uncased-detect-dep-v9 results: [] --- # bert-large-uncased-detect-dep-v9 This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6174 - Accuracy: 0.708 - F1: 0.7771 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.6322 | 1.0 | 501 | 0.5564 | 0.728 | 0.8140 | | 0.5787 | 2.0 | 1002 | 0.5288 | 0.756 | 0.8140 | | 0.5301 | 3.0 | 1503 | 0.5236 | 0.748 | 0.8053 | | 0.4717 | 4.0 | 2004 | 0.6008 | 0.702 | 0.7847 | | 0.4229 | 5.0 | 2505 | 0.6174 | 0.708 | 0.7771 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.0 - Tokenizers 0.13.3