--- license: apache-2.0 base_model: bert-large-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: bert-large-uncased-detect-dep-v3 results: [] --- # bert-large-uncased-detect-dep-v3 This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7373 - Accuracy: 0.714 - F1: 0.7866 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.6292 | 1.0 | 751 | 0.5615 | 0.732 | 0.8154 | | 0.5615 | 2.0 | 1502 | 0.5663 | 0.745 | 0.8188 | | 0.4986 | 3.0 | 2253 | 0.5709 | 0.74 | 0.7969 | | 0.4214 | 4.0 | 3004 | 0.7008 | 0.714 | 0.7963 | | 0.3636 | 5.0 | 3755 | 0.7373 | 0.714 | 0.7866 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3