--- language: - en license: other library_name: transformers tags: - chat - llama-cpp - gguf-my-repo license_name: mrl pipeline_tag: text-generation datasets: - anthracite-org/c2_logs_32k_mistral-v3_v1.2_no_system - anthracite-org/kalo-opus-instruct-22k-no-refusal-no-system - anthracite-org/kalo-opus-instruct-3k-filtered-no-system - anthracite-org/nopm_claude_writing_fixed - anthracite-org/kalo_opus_misc_240827_no_system - anthracite-org/kalo_misc_part2_no_system base_model: anthracite-org/magnum-v4-22b model-index: - name: magnum-v4-22b results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 56.29 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=anthracite-org/magnum-v4-22b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 35.55 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=anthracite-org/magnum-v4-22b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 17.6 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=anthracite-org/magnum-v4-22b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 10.4 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=anthracite-org/magnum-v4-22b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 13.43 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=anthracite-org/magnum-v4-22b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 31.44 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=anthracite-org/magnum-v4-22b name: Open LLM Leaderboard --- # Triangle104/magnum-v4-22b-Q5_K_S-GGUF This model was converted to GGUF format from [`anthracite-org/magnum-v4-22b`](https://huggingface.co/anthracite-org/magnum-v4-22b) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/anthracite-org/magnum-v4-22b) for more details on the model. --- Model details: - This is a series of models designed to replicate the prose quality of the Claude 3 models, specifically Sonnet and Opus. This model is fine-tuned on top of Mistral-Small-Instruct-2409. Prompting - A typical input would look like this: [INST] SYSTEM MESSAGE USER MESSAGE[/INST] ASSISTANT MESSAGE[INST] USER MESSAGE[/INST] Credits - We'd like to thank Recursal / Featherless for sponsoring the compute for this train, Featherless has been hosting our Magnum models since the first 72 B and has given thousands of people access to our models and helped us grow. We would also like to thank all members of Anthracite who made this finetune possible. Datasets - anthracite-org/c2_logs_32k_mistral-v3_v1.2_no_system anthracite-org/kalo-opus-instruct-22k-no-refusal-no-system anthracite-org/kalo-opus-instruct-3k-filtered-no-system anthracite-org/nopm_claude_writing_fixed anthracite-org/kalo_opus_misc_240827_no_system anthracite-org/kalo_misc_part2_no_system Training - The training was done for 2 epochs. We used 8xH100s GPUs graciously provided by Recursal AI / Featherless AI for the full-parameter fine-tuning of the model. --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/magnum-v4-22b-Q5_K_S-GGUF --hf-file magnum-v4-22b-q5_k_s.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/magnum-v4-22b-Q5_K_S-GGUF --hf-file magnum-v4-22b-q5_k_s.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/magnum-v4-22b-Q5_K_S-GGUF --hf-file magnum-v4-22b-q5_k_s.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/magnum-v4-22b-Q5_K_S-GGUF --hf-file magnum-v4-22b-q5_k_s.gguf -c 2048 ```