--- license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen2.5-Coder-14B/blob/main/LICENSE language: - en base_model: rombodawg/Rombos-Coder-V2.5-Qwen-14b pipeline_tag: text-generation library_name: transformers tags: - code - qwen - qwen-coder - codeqwen - llama-cpp - gguf-my-repo --- # Triangle104/Rombos-Coder-V2.5-Qwen-14b-Q4_K_M-GGUF This model was converted to GGUF format from [`rombodawg/Rombos-Coder-V2.5-Qwen-14b`](https://huggingface.co/rombodawg/Rombos-Coder-V2.5-Qwen-14b) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/rombodawg/Rombos-Coder-V2.5-Qwen-14b) for more details on the model. --- Model details: - Rombos-Coder-V2.5-Qwen-14b is a continues finetuned version of Qwen2.5-Coder-14B-Instruct. I took it upon myself to merge the instruct model with the base model myself using the Ties merge method as demonstrated in my own "Continuous Finetuning" method (Linked bellow). https://docs.google.com/document/d/1OjbjU5AOz4Ftn9xHQrX3oFQGhQ6RDUuXQipnQ9gn6tU/edit?usp=sharing This version of the model shows higher performance than the original instruct and base models. --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Rombos-Coder-V2.5-Qwen-14b-Q4_K_M-GGUF --hf-file rombos-coder-v2.5-qwen-14b-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Rombos-Coder-V2.5-Qwen-14b-Q4_K_M-GGUF --hf-file rombos-coder-v2.5-qwen-14b-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Rombos-Coder-V2.5-Qwen-14b-Q4_K_M-GGUF --hf-file rombos-coder-v2.5-qwen-14b-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Rombos-Coder-V2.5-Qwen-14b-Q4_K_M-GGUF --hf-file rombos-coder-v2.5-qwen-14b-q4_k_m.gguf -c 2048 ```