--- language: - zh - en license: gpl-3.0 tags: - qwen - uncensored - llama-cpp - gguf-my-repo base_model: Orion-zhen/Qwen2.5-7B-Instruct-Uncensored datasets: - NobodyExistsOnTheInternet/ToxicQAFinal - anthracite-org/kalo-opus-instruct-22k-no-refusal - Orion-zhen/dpo-toxic-zh - unalignment/toxic-dpo-v0.2 - Crystalcareai/Intel-DPO-Pairs-Norefusals pipeline_tag: text-generation model-index: - name: Qwen2.5-7B-Instruct-Uncensored results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 72.04 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Orion-zhen/Qwen2.5-7B-Instruct-Uncensored name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 35.83 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Orion-zhen/Qwen2.5-7B-Instruct-Uncensored name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 1.36 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Orion-zhen/Qwen2.5-7B-Instruct-Uncensored name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 7.05 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Orion-zhen/Qwen2.5-7B-Instruct-Uncensored name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 13.58 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Orion-zhen/Qwen2.5-7B-Instruct-Uncensored name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 38.07 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Orion-zhen/Qwen2.5-7B-Instruct-Uncensored name: Open LLM Leaderboard --- # Triangle104/Qwen2.5-7B-Instruct-Uncensored-Q4_K_M-GGUF This model was converted to GGUF format from [`Orion-zhen/Qwen2.5-7B-Instruct-Uncensored`](https://huggingface.co/Orion-zhen/Qwen2.5-7B-Instruct-Uncensored) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Orion-zhen/Qwen2.5-7B-Instruct-Uncensored) for more details on the model. --- Model details: - This model is an uncensored fine-tune version of Qwen2.5-7B-Instruct. However, I can still notice that though uncensored, the model fails to generate detailed descriptions on certain extreme scenarios, which might be associated with deletion on some pretrain datasets in Qwen's pretraining stage. Traning details - I used SFT + DPO to ensure uncensorment as well as trying to maintain original model's capabilities. SFT: NobodyExistsOnTheInternet/ToxicQAFinal anthracite-org/kalo-opus-instruct-22k-no-refusal DPO: Orion-zhen/dpo-toxic-zh unalignment/toxic-dpo-v0.2 Crystalcareai/Intel-DPO-Pairs-Norefusals --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Qwen2.5-7B-Instruct-Uncensored-Q4_K_M-GGUF --hf-file qwen2.5-7b-instruct-uncensored-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Qwen2.5-7B-Instruct-Uncensored-Q4_K_M-GGUF --hf-file qwen2.5-7b-instruct-uncensored-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Qwen2.5-7B-Instruct-Uncensored-Q4_K_M-GGUF --hf-file qwen2.5-7b-instruct-uncensored-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Qwen2.5-7B-Instruct-Uncensored-Q4_K_M-GGUF --hf-file qwen2.5-7b-instruct-uncensored-q4_k_m.gguf -c 2048 ```