--- library_name: transformers license: apache-2.0 datasets: - nbeerbower/GreatFirewall-DPO - nbeerbower/Schule-DPO - nbeerbower/Purpura-DPO - nbeerbower/Arkhaios-DPO - jondurbin/truthy-dpo-v0.1 - antiven0m/physical-reasoning-dpo - flammenai/Date-DPO-NoAsterisks - flammenai/Prude-Phi3-DPO - Atsunori/HelpSteer2-DPO - jondurbin/gutenberg-dpo-v0.1 - nbeerbower/gutenberg2-dpo - nbeerbower/gutenberg-moderne-dpo base_model: nbeerbower/Dumpling-Qwen2.5-32B tags: - llama-cpp - gguf-my-repo --- # Triangle104/Dumpling-Qwen2.5-32B-Q3_K_M-GGUF This model was converted to GGUF format from [`nbeerbower/Dumpling-Qwen2.5-32B`](https://huggingface.co/nbeerbower/Dumpling-Qwen2.5-32B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/nbeerbower/Dumpling-Qwen2.5-32B) for more details on the model. --- nbeerbower/Rombos-EVAGutenberg-TIES-Qwen2.5-32B finetuned on: nbeerbower/GreatFirewall-DPO nbeerbower/Schule-DPO nbeerbower/Purpura-DPO nbeerbower/Arkhaios-DPO jondurbin/truthy-dpo-v0.1 antiven0m/physical-reasoning-dpo flammenai/Date-DPO-NoAsterisks flammenai/Prude-Phi3-DPO Atsunori/HelpSteer2-DPO jondurbin/gutenberg-dpo-v0.1 nbeerbower/gutenberg2-dpo nbeerbower/gutenberg-moderne-dpo. Method ORPO tuned with 8x A100 for 2 epochs. --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Dumpling-Qwen2.5-32B-Q3_K_M-GGUF --hf-file dumpling-qwen2.5-32b-q3_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Dumpling-Qwen2.5-32B-Q3_K_M-GGUF --hf-file dumpling-qwen2.5-32b-q3_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Dumpling-Qwen2.5-32B-Q3_K_M-GGUF --hf-file dumpling-qwen2.5-32b-q3_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Dumpling-Qwen2.5-32B-Q3_K_M-GGUF --hf-file dumpling-qwen2.5-32b-q3_k_m.gguf -c 2048 ```