--- license: mit base_model: SCUT-DLVCLab/lilt-roberta-en-base tags: - generated_from_trainer model-index: - name: lilt-invoices results: [] --- # lilt-invoices This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0031 - Endorname: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 177} - Escription: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 183} - Illingaddress: {'precision': 1.0, 'recall': 0.9937888198757764, 'f1': 0.9968847352024921, 'number': 161} - Mount: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 175} - Nitprice: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 156} - Nvoicedate: {'precision': 0.9941520467836257, 'recall': 1.0, 'f1': 0.9970674486803519, 'number': 170} - Nvoicetotal: {'precision': 0.9946808510638298, 'recall': 0.9946808510638298, 'f1': 0.9946808510638298, 'number': 188} - Otaltax: {'precision': 1.0, 'recall': 0.9927007299270073, 'f1': 0.9963369963369962, 'number': 137} - Uantity: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 167} - Ubtotal: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 151} - Overall Precision: 0.9988 - Overall Recall: 0.9982 - Overall F1: 0.9985 - Overall Accuracy: 0.9994 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Endorname | Escription | Illingaddress | Mount | Nitprice | Nvoicedate | Nvoicetotal | Otaltax | Uantity | Ubtotal | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:----:|:---------------:|:-----------------------------------------------------------:|:-----------------------------------------------------------:|:-----------------------------------------------------------------------------------------:|:-----------------------------------------------------------:|:-----------------------------------------------------------:|:-----------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------:|:-----------------------------------------------------------:|:-----------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:| | 0.1736 | 21.74 | 500 | 0.0031 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 177} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 183} | {'precision': 1.0, 'recall': 0.9937888198757764, 'f1': 0.9968847352024921, 'number': 161} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 175} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 156} | {'precision': 0.9941520467836257, 'recall': 1.0, 'f1': 0.9970674486803519, 'number': 170} | {'precision': 0.9946808510638298, 'recall': 0.9946808510638298, 'f1': 0.9946808510638298, 'number': 188} | {'precision': 1.0, 'recall': 0.9927007299270073, 'f1': 0.9963369963369962, 'number': 137} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 167} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 151} | 0.9988 | 0.9982 | 0.9985 | 0.9994 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3