ToastyPigeon commited on
Commit
bbd90c7
·
verified ·
1 Parent(s): d9f9c7f

End of training

Browse files
Files changed (1) hide show
  1. README.md +196 -190
README.md CHANGED
@@ -1,202 +1,208 @@
1
  ---
2
- base_model: mistralai/Mistral-Small-24B-Instruct-2501
3
  library_name: peft
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
-
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
 
100
 
101
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
102
 
103
- ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
200
  ### Framework versions
201
 
202
- - PEFT 0.14.0
 
 
 
 
 
1
  ---
 
2
  library_name: peft
3
+ license: apache-2.0
4
+ base_model: mistralai/Mistral-Small-24B-Instruct-2501
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ datasets:
9
+ - ToastyPigeon/some-rp-extended
10
+ model-index:
11
+ - name: new-ms-rp-test-ws
12
+ results: []
13
  ---
14
 
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
18
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
19
+ <details><summary>See axolotl config</summary>
20
 
21
+ axolotl version: `0.6.0`
22
+ ```yaml
23
+ # git clone https://github.com/axolotl-ai-cloud/axolotl
24
+ # cd axolotl
25
+ # git checkout 844331005c1ef45430ff26b9f42f757dce6ee66a
26
+ # pip3 install packaging ninja huggingface_hub[cli]
27
+ # pip3 install -e '.[flash-attn,deepspeed]'
28
+ # huggingface-cli login --token $hf_key && wandb login $wandb_key
29
+ # python -m axolotl.cli.preprocess new-ms-rp-only-test.yml
30
+ # accelerate launch -m axolotl.cli.train new-ms-rp-only-test.yml
31
+ # python -m axolotl.cli.merge_lora new-ms-rp-only-test.yml --lora_on_cpu
32
+ # huggingface-cli upload ToastyPigeon/ms-rp-only-qlora-TEST train-workspace/merged . --exclude "*.md"
33
 
34
+ # git clone https://github.com/axolotl-ai-cloud/axolotl && cd axolotl && pip3 install packaging ninja huggingface_hub[cli] && pip3 install -e '.[flash-attn,deepspeed]' && cd .. && huggingface-cli login --token $hf_key && wandb login $wandb_key
35
 
36
+ # Model
37
+ base_model: mistralai/Mistral-Small-24B-Instruct-2501
38
+ model_type: AutoModelForCausalLM
39
+ tokenizer_type: AutoTokenizer
40
+
41
+ load_in_8bit: false
42
+ load_in_4bit: true
43
+ strict: false
44
+ bf16: auto
45
+ fp16:
46
+ tf32: false
47
+ flash_attention: true
48
+ special_tokens:
49
+
50
+ # Output
51
+ output_dir: ./train-workspace
52
+ hub_model_id: ToastyPigeon/new-ms-rp-test-ws
53
+ hub_strategy: "checkpoint"
54
+ resume_from_checkpoint:
55
+ saves_per_epoch: 1
56
+
57
+ # Data
58
+ sequence_len: 4096 # fits
59
+ min_sample_len: 128
60
+ dataset_prepared_path: last_run_prepared
61
+ datasets:
62
+ - path: ToastyPigeon/some-rp-extended
63
+ type: chat_template
64
+ field_messages: conversations
65
+ message_field_role: from
66
+ message_field_content: value
67
+ warmup_steps: 10
68
+ shuffle_merged_datasets: true
69
+ sample_packing: true
70
+ pad_to_sequence_len: true
71
+ chat_template: jinja
72
+ chat_template_jinja: "{%- set default_system_message = \"You are an unbiased, unfiltered, and unaligned AI.\" %}\n\n{{- bos_token }}\n\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content'] %}\n {%- set loop_messages = messages[1:] %}\n{%- else %}\n {%- set system_message = default_system_message %}\n {%- set loop_messages = messages %}\n{%- endif %}\n{{- '[SYSTEM_PROMPT]' + system_message + '[/SYSTEM_PROMPT]' }}\n\n{%- for message in loop_messages %}\n {%- if message['role'] == 'user' %}\n {{- '[INST]' + message['content'] + '[/INST]' }}\n {%- elif message['role'] == 'system' %}\n {{- '[SYSTEM_PROMPT]' + message['content'] + '[/SYSTEM_PROMPT]' }}\n {%- elif message['role'] == 'assistant' %}\n {{- message['content'] + eos_token }}\n {%- else %}\n {{- raise_exception('Only user, system and assistant roles are supported!') }}\n {%- endif %}\n{%- endfor %}"
73
+
74
+ # Batching
75
+ num_epochs: 1
76
+ gradient_accumulation_steps: 4
77
+ micro_batch_size: 1
78
+ eval_batch_size: 1
79
+
80
+ # Evaluation
81
+ val_set_size: 40
82
+ evals_per_epoch: 5
83
+ eval_table_size:
84
+ eval_max_new_tokens: 256
85
+ eval_sample_packing: false
86
+
87
+ save_safetensors: true
88
+
89
+ # WandB
90
+ wandb_project: MS-Rp-Test
91
+ #wandb_entity:
92
+
93
+ gradient_checkpointing: 'unsloth'
94
+ #gradient_checkpointing_kwargs:
95
+ # use_reentrant: false
96
+
97
+ unsloth_cross_entropy_loss: true
98
+ #unsloth_lora_mlp: true
99
+ #unsloth_lora_qkv: true
100
+ #unsloth_lora_o: true
101
+
102
+ # LoRA
103
+ adapter: qlora
104
+ lora_model_dir:
105
+ lora_r: 32
106
+ lora_alpha: 64
107
+ lora_dropout: 0.25
108
+ lora_target_linear:
109
+ lora_fan_in_fan_out:
110
+ lora_target_modules:
111
+ - gate_proj
112
+ - down_proj
113
+ - up_proj
114
+ - q_proj
115
+ - v_proj
116
+ - k_proj
117
+ - o_proj
118
+ lora_modules_to_save:
119
+
120
+ # Optimizer
121
+ optimizer: paged_ademamix_8bit # adamw_8bit
122
+ lr_scheduler: cosine
123
+ learning_rate: 5e-5
124
+ cosine_min_lr_ratio: 0.5
125
+ weight_decay: 0.01
126
+ max_grad_norm: 1.0
127
+
128
+ # Misc
129
+ train_on_inputs: false
130
+ group_by_length: false
131
+ early_stopping_patience:
132
+ local_rank:
133
+ logging_steps: 1
134
+ xformers_attention:
135
+ debug:
136
+ #deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16.json # previously blank
137
+ fsdp:
138
+ fsdp_config:
139
+
140
+ plugins:
141
+ - axolotl.integrations.liger.LigerPlugin
142
+ # - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
143
+ #cut_cross_entropy: true
144
+ liger_rope: true
145
+ liger_rms_norm: true
146
+ liger_layer_norm: true
147
+ liger_glu_activation: true
148
+ #liger_fused_linear_cross_entropy: true
149
+
150
+ gc_steps: 10
151
+ seed: 69
152
+ ```
153
+
154
+ </details><br>
155
+
156
+ # new-ms-rp-test-ws
157
+
158
+ This model is a fine-tuned version of [mistralai/Mistral-Small-24B-Instruct-2501](https://huggingface.co/mistralai/Mistral-Small-24B-Instruct-2501) on the ToastyPigeon/some-rp-extended dataset.
159
+ It achieves the following results on the evaluation set:
160
+ - Loss: 2.1127
161
+
162
+ ## Model description
163
+
164
+ More information needed
165
+
166
+ ## Intended uses & limitations
167
+
168
+ More information needed
169
+
170
+ ## Training and evaluation data
171
+
172
+ More information needed
173
+
174
+ ## Training procedure
175
+
176
+ ### Training hyperparameters
177
+
178
+ The following hyperparameters were used during training:
179
+ - learning_rate: 5e-05
180
+ - train_batch_size: 1
181
+ - eval_batch_size: 1
182
+ - seed: 69
183
+ - gradient_accumulation_steps: 4
184
+ - total_train_batch_size: 4
185
+ - optimizer: Use OptimizerNames.PAGED_ADEMAMIX_8BIT and the args are:
186
+ No additional optimizer arguments
187
+ - lr_scheduler_type: cosine
188
+ - lr_scheduler_warmup_steps: 10
189
+ - num_epochs: 1.0
190
+
191
+ ### Training results
192
+
193
+ | Training Loss | Epoch | Step | Validation Loss |
194
+ |:-------------:|:------:|:----:|:---------------:|
195
+ | 2.4594 | 0.0078 | 1 | 2.2498 |
196
+ | 2.1355 | 0.2031 | 26 | 2.1281 |
197
+ | 2.1069 | 0.4062 | 52 | 2.1199 |
198
+ | 1.8512 | 0.6094 | 78 | 2.1148 |
199
+ | 2.0247 | 0.8125 | 104 | 2.1127 |
200
 
 
201
 
 
202
  ### Framework versions
203
 
204
+ - PEFT 0.14.0
205
+ - Transformers 4.48.1
206
+ - Pytorch 2.5.1+cu124
207
+ - Datasets 3.2.0
208
+ - Tokenizers 0.21.0