--- library_name: peft license: other base_model: SeaLLMs/SeaLLM3-7B-Chat tags: - axolotl - generated_from_trainer model-index: - name: proof-reading-SeaLLM3-7B-Chat-3090-v11 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.5.0` ```yaml base_model: SeaLLMs/SeaLLM3-7B-Chat trust_remote_code: true load_in_8bit: false load_in_4bit: true strict: false datasets: - path: Tippawan/p11-seallm type: chat_template conversation: chatml field_messages: messages chat_template: chatml dataset_prepared_path: val_set_size: 0.00 #editted 2 output_dir: ./outputs/outputs_name sequence_len: 2048 sample_packing: false eval_sample_packing: false pad_to_sequence_len: false push_to_hub: true hub_model_id: Tippawan/proof-reading-SeaLLM3-7B-Chat-3090-v11 # Replace with your Hugging Face repo ID use_auth_token: true # Ensure you have set your Hugging Face API token in the environment hub_private_repo: true # Set to true if you want the repository to be private hub_strategy: all_checkpoints save_total_limit: 3 load_best_model_at_end: true adapter: lora lora_model_dir: Tippawan/proof-reading-SeaLLM3-7B-Chat-3090-v9 lora_r: 16 lora_alpha: 32 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: wandb_project: proof-reading-SeaLLM3-7B-Chat-3090-v11 wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 1 #editted 3 optimizer: adamw_torch lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: true gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true seed: 42 warmup_steps: 10 evals_per_epoch: 1 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: ```

# proof-reading-SeaLLM3-7B-Chat-3090-v11 This model is a fine-tuned version of [SeaLLMs/SeaLLM3-7B-Chat](https://huggingface.co/SeaLLMs/SeaLLM3-7B-Chat) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1 ### Training results ### Framework versions - PEFT 0.13.2 - Transformers 4.46.1 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.3