Tingwen commited on
Commit
1ecf91e
·
1 Parent(s): 367720f

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 654.66 +/- 99.80
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b41fbf3be5ad00e4501bfc86925c4eda1271ad6bf915715b33481ccf4f01292
3
+ size 128993
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3b15acb7f0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3b15acb880>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3b15acb910>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3b15acb9a0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f3b15acba30>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f3b15acbac0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3b15acbb50>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3b15acbbe0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f3b15acbc70>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3b15acbd00>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3b15acbd90>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3b15acbe20>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f3b15ab7ec0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "num_timesteps": 2000000,
36
+ "_total_timesteps": 2000000,
37
+ "_num_timesteps_at_start": 0,
38
+ "seed": null,
39
+ "action_noise": null,
40
+ "start_time": 1684584156960186185,
41
+ "learning_rate": 0.00096,
42
+ "tensorboard_log": null,
43
+ "lr_schedule": {
44
+ ":type:": "<class 'function'>",
45
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
46
+ },
47
+ "_last_obs": {
48
+ ":type:": "<class 'numpy.ndarray'>",
49
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAN+Nlz7qJL8/qPRbv7OpyT5hjJ4+XVZgP04lID+laAa/+Zmjv0MSVb9sFQS/U/VGP4+QCr/PwZE/7mXzvnFDmT3+wzE/kqGvP93u9T5cQRO/IDxWv4ejcT0Iy4Q8RzIoPvHje78k7AU/12QPwKW3Oz+swIU/3Y2PPyQbfb5G2Zy+G2SXP6Q4Zb53CKk/Vrzavy2Lqb+r9V1AaT0hv+1rYLyVy/0/VJtEPwPJQj9H69w8ybaWP/t0t7qrnik/QTk0v4/djj3Mang/3VSsPzb5Tz7x43u/JOwFP3KE5D6ltzs/cPyYv9HBzD+1V4u//tOyv7F7lb7U77I9jo6jPj3cND+nXjXAADvIu0ghIL9wuo684D6mv6LHpjs+0tM9KCwZPN6TGsCXHp47Va1iPsncizywCFW//4GtPGc/db9g3si8nBaCPyTsBT9yhOQ+pbc7P3AWh78mZQNAlpKwwNa9r7/2OaK+53ePPY6Txz4kck0/wWA1wLkIx7tNsyG/gimnu0Jrmb8E/0Q8qXCYvWOivjwAmRrAqfjmuoVGbj1WnyQ9dvNUv5GytDtXzXS/rBudvJwWgj8k7AU/coTkPqW3Oz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
50
+ },
51
+ "_last_episode_starts": {
52
+ ":type:": "<class 'numpy.ndarray'>",
53
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
54
+ },
55
+ "_last_original_obs": {
56
+ ":type:": "<class 'numpy.ndarray'>",
57
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAC/x820AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAXA0zPQAAAABPq9y/AAAAAPwP0b0AAAAA9+DyPwAAAAAc5Lk8AAAAABwe8T8AAAAAMxrXvQAAAAC+X+i/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5toBNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPn2+L0AAAAACePmvwAAAACBjKc9AAAAAL5T8z8AAAAAQKaBvQAAAABR/P8/AAAAANRccT0AAAAAcvDavwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1lq7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBU9448AAAAALoC6r8AAAAAGnmwvAAAAABJJQFAAAAAAJMaZ70AAAAA30nfPwAAAAA70PQ9AAAAAAx67L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD1xKc0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA9B4LPgAAAABZ+fa/AAAAAFPfzjwAAAAAi2/2PwAAAACBPTc9AAAAAF+Y8j8AAAAA4UaavQAAAAAMmeC/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
58
+ },
59
+ "_episode_num": 0,
60
+ "use_sde": true,
61
+ "sde_sample_freq": -1,
62
+ "_current_progress_remaining": 0.0,
63
+ "_stats_window_size": 100,
64
+ "ep_info_buffer": {
65
+ ":type:": "<class 'collections.deque'>",
66
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJWcdX2dupGMAWyUTegDjAF0lEdAsc3b5IpYtHV9lChoBkdAl6WrUPQOWmgHTegDaAhHQLHOuUb1h9d1fZQoaAZHQJYXLftQbddoB03oA2gIR0Cx0Cby1/lRdX2UKGgGR0CSAtF9a2WqaAdN6ANoCEdAsdEtBVuJlHV9lChoBkdAlEZPHT7VKGgHTegDaAhHQLHXzMajveB1fZQoaAZHQJRqsG+sYEZoB03oA2gIR0Cx2KN8ma6SdX2UKGgGR0CU6gnL7oB8aAdN6ANoCEdAsdoFtHhCMXV9lChoBkdAlTdqvaDf32gHTegDaAhHQLHav4xDb8F1fZQoaAZHQJXyeNyYG+toB03oA2gIR0Cx34aaG5+ZdX2UKGgGR0CZ+pG47Rv4aAdN6ANoCEdAseCc1n/T9nV9lChoBkdAld/tUwSJ0mgHTegDaAhHQLHi3G3nZCh1fZQoaAZHQJXuhTcZccFoB03oA2gIR0Cx5BPpUxVRdX2UKGgGR0CRIFBqKxcFaAdN6ANoCEdAsemMrJ8v3HV9lChoBkdAmAnaFdszmGgHTegDaAhHQLHqZTisGPh1fZQoaAZHQJcUZgpjMFFoB03oA2gIR0Cx68U0Nz8xdX2UKGgGR0CcdHYzi0fHaAdN6ANoCEdAseyKdiDujXV9lChoBkdAjOjOJ+DvmmgHTegDaAhHQLHyiTt9hJB1fZQoaAZHQJughnQID5loB03oA2gIR0Cx8+nyI55rdX2UKGgGR0CXxOM1jy4GaAdN6ANoCEdAsfW+tFKChHV9lChoBkdAlFkCydFvymgHTegDaAhHQLH2fG8mKIl1fZQoaAZHQIiEZ8KG+K1oB03oA2gIR0Cx+3e9WZJDdX2UKGgGR0CUfy8KG+K1aAdN6ANoCEdAsfxXyvs7dXV9lChoBkdAmxXPhddE9mgHTegDaAhHQLH9vgGr0at1fZQoaAZHQJkfdqM3qA1oB03oA2gIR0Cx/nyWE9McdX2UKGgGR0CQmz78ejmCaAdN6ANoCEdAsgV22hIvrXV9lChoBkdAmrgBMi8nNWgHTegDaAhHQLIGV8rZrYZ1fZQoaAZHQJh8G43FUAFoB03oA2gIR0CyB8pwOvt/dX2UKGgGR0CXCMfAbhm5aAdN6ANoCEdAsgiG0mdAgXV9lChoBkdAlWcMvVVghWgHTegDaAhHQLINi7qptJp1fZQoaAZHQJZgURK6FuhoB03oA2gIR0CyDmdh/iHZdX2UKGgGR0CZxYq4pc5baAdN6ANoCEdAshB3n4fwJHV9lChoBkdAmBLhz7uUlmgHTegDaAhHQLIRog1FYuF1fZQoaAZHQJksoLeANG5oB03oA2gIR0CyF3j+rELqdX2UKGgGR0CQFLUNrj5saAdN6ANoCEdAshhSs5n14HV9lChoBkdAl2L912aDw2gHTegDaAhHQLIZsxLkCFN1fZQoaAZHQJfUErXlKbtoB03oA2gIR0CyGmsdcSoPdX2UKGgGR0CTWxtvXK8taAdN6ANoCEdAsiAAKa5PM3V9lChoBkdAl0SHUYsND2gHTegDaAhHQLIhaAh0Qsh1fZQoaAZHQJUlnrD63y9oB03oA2gIR0CyI5yJO32FdX2UKGgGR0CWAA03fhuPaAdN6ANoCEdAsiRcnc+JQHV9lChoBkdAllamMKkVOGgHTegDaAhHQLIpNDZDiOx1fZQoaAZHQJgZHPAwfyRoB03oA2gIR0CyKgrMcIZ7dX2UKGgGR0CTmEvboKUnaAdN6ANoCEdAsit0E7nxKHV9lChoBkdAlbJza9K28mgHTegDaAhHQLIsMA/cFhZ1fZQoaAZHQJYg9Du0CzVoB03oA2gIR0CyMxjl90A+dX2UKGgGR0CXK3d+5OJtaAdN6ANoCEdAsjP61WsBAHV9lChoBkdAlPhj6nBLwmgHTegDaAhHQLI1VWbwz+F1fZQoaAZHQJYnwJeE7GNoB03oA2gIR0CyNgvIn0CjdX2UKGgGR0CUVHScbzbwaAdN6ANoCEdAsjrvJ5mh/XV9lChoBkdAjKCPGIbfg2gHTegDaAhHQLI7z8Yht+F1fZQoaAZHQIzbBe9i+cpoB03oA2gIR0CyPU22gFotdX2UKGgGR0CXmlA8jiXIaAdN6ANoCEdAsj5plSS/03V9lChoBkdAlRRScwxnF2gHTegDaAhHQLJE+5YYBNp1fZQoaAZHQJcakrTYukFoB03oA2gIR0CyRde2JBPbdX2UKGgGR0CRQhUc4o7WaAdN6ANoCEdAskc7Khcqv3V9lChoBkdAk7FEzCUHIWgHTegDaAhHQLJICyeZof11fZQoaAZHQJRrxG7SRbNoB03oA2gIR0CyTRRR2r4ndX2UKGgGR0CR4L7laKUFaAdN6ANoCEdAsk5R93KSxXV9lChoBkdAkKWduUD+zmgHTegDaAhHQLJQjy6MBIZ1fZQoaAZHQJGkTOfNA1NoB03oA2gIR0CyUbvgR9PUdX2UKGgGR0CVCeuYhMakaAdN6ANoCEdAsla5K9PDYXV9lChoBkdAlH5uuA7Pp2gHTegDaAhHQLJXmKKpDNR1fZQoaAZHQJWQq7pV0cRoB03oA2gIR0CyWQ/va11GdX2UKGgGR0CT61gKnei0aAdN6ANoCEdAslnV+YtxuXV9lChoBkdAk4jEnPVurWgHTegDaAhHQLJgSFdLQHB1fZQoaAZHQJYZkijcmBxoB03oA2gIR0CyYa/X9R77dX2UKGgGR0CR9OuRcNYsaAdN6ANoCEdAsmMdnbqQinV9lChoBkdAlSFHObAk9mgHTegDaAhHQLJj1wx33Yd1fZQoaAZHQJU1bgOz6adoB03oA2gIR0CyaMAyIpH7dX2UKGgGR0CRHC1mapgkaAdN6ANoCEdAsmma+HrQgXV9lChoBkdAksVHrD63zGgHTegDaAhHQLJrAZRbbDd1fZQoaAZHQJVoH39JjDtoB03oA2gIR0Cya8CLIgeSdX2UKGgGR0CQmn2ZiNKiaAdN6ANoCEdAsnK4sRQJonV9lChoBkdAjr+GZE2HcmgHTegDaAhHQLJzm7CBPKx1fZQoaAZHQI9zjOcDr7hoB03oA2gIR0CydRSjgydndX2UKGgGR0CRYi2CNCJGaAdN6ANoCEdAsnXQEt/WlXV9lChoBkdAjLldPtUn5WgHTegDaAhHQLJ62zGgi/x1fZQoaAZHQIZKoTCcf/5oB03oA2gIR0CyfAd+LFXJdX2UKGgGR0CFQeyGBWgfaAdN6ANoCEdAsn5Y0IkZ8HV9lChoBkdAj1JowM6RyWgHTegDaAhHQLJ/ijAi3Xt1fZQoaAZHQImynMdLg4xoB03oA2gIR0CyhQglKK51dX2UKGgGR0CNOBGDtgKGaAdN6ANoCEdAsoXqz9jwx3V9lChoBkdAlHgl2NedCmgHTegDaAhHQLKHTRyfcvd1fZQoaAZHQItNg2Q4jr1oB03oA2gIR0CyiARO1v2odX2UKGgGR0CN/prC3w1BaAdN6ANoCEdAso5OBtk4FXV9lChoBkdAi/qwFs54nmgHTegDaAhHQLKPry6tknV1fZQoaAZHQJH0VJCjUNNoB03oA2gIR0CykU8uanaWdX2UKGgGR0CItl2YfGMoaAdN6ANoCEdAspITOX3QD3V9lChoBkdAkeQb2L5yl2gHTegDaAhHQLKXHDdgv111fZQoaAZHQJAchX7tReloB03oA2gIR0Cyl/7b5/LDdX2UKGgGR0CHKZ3Zf2K3aAdN6ANoCEdAspl4YFaB7XV9lChoBkdAlXBafOD8L2gHTegDaAhHQLKaO690zTF1fZQoaAZHQIkpXcN6PbRoB03oA2gIR0CyoSPxUedTdX2UKGgGR0CPhsWdEsreaAdN6ANoCEdAsqIM3uNPxnV9lChoBkdAhZbygXdj5WgHTegDaAhHQLKjf03fhuR1fZQoaAZHQI2UAhMajvdoB03oA2gIR0CypDl/MGHIdX2UKGgGR0CG4gjafzz3aAdN6ANoCEdAsqlEnTiKi3V9lChoBkdAjApouGsV+WgHTegDaAhHQLKqV+1Bt1p1fZQoaAZHQILuvfMwDeVoB03oA2gIR0CyrI7v1DjSdX2UKGgGR0CCJOjrzGxVaAdN6ANoCEdAsq27UZvUBnVlLg=="
67
+ },
68
+ "ep_success_buffer": {
69
+ ":type:": "<class 'collections.deque'>",
70
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
71
+ },
72
+ "_n_updates": 62500,
73
+ "n_steps": 8,
74
+ "gamma": 0.99,
75
+ "gae_lambda": 0.9,
76
+ "ent_coef": 0.0,
77
+ "vf_coef": 0.4,
78
+ "max_grad_norm": 0.5,
79
+ "normalize_advantage": false,
80
+ "observation_space": {
81
+ ":type:": "<class 'gym.spaces.box.Box'>",
82
+ ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
83
+ "dtype": "float32",
84
+ "_shape": [
85
+ 28
86
+ ],
87
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
88
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
89
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
90
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
91
+ "_np_random": null
92
+ },
93
+ "action_space": {
94
+ ":type:": "<class 'gym.spaces.box.Box'>",
95
+ ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
96
+ "dtype": "float32",
97
+ "_shape": [
98
+ 8
99
+ ],
100
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
101
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
102
+ "bounded_below": "[ True True True True True True True True]",
103
+ "bounded_above": "[ True True True True True True True True]",
104
+ "_np_random": null
105
+ },
106
+ "n_envs": 4
107
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8bd38e683c5650007eb648ff74045f2e012064e9a97ba89359f46e36f6109fa2
3
+ size 56062
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:390d22725a84d1ae5a73341eef92b49bc8ae288233bc8558f2633b5e12641b72
3
+ size 56766
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
+ - Python: 3.10.11
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: False
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3b15acb7f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3b15acb880>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3b15acb910>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3b15acb9a0>", "_build": "<function ActorCriticPolicy._build at 0x7f3b15acba30>", "forward": "<function ActorCriticPolicy.forward at 0x7f3b15acbac0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3b15acbb50>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3b15acbbe0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3b15acbc70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3b15acbd00>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3b15acbd90>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3b15acbe20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f3b15ab7ec0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684584156960186185, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAN+Nlz7qJL8/qPRbv7OpyT5hjJ4+XVZgP04lID+laAa/+Zmjv0MSVb9sFQS/U/VGP4+QCr/PwZE/7mXzvnFDmT3+wzE/kqGvP93u9T5cQRO/IDxWv4ejcT0Iy4Q8RzIoPvHje78k7AU/12QPwKW3Oz+swIU/3Y2PPyQbfb5G2Zy+G2SXP6Q4Zb53CKk/Vrzavy2Lqb+r9V1AaT0hv+1rYLyVy/0/VJtEPwPJQj9H69w8ybaWP/t0t7qrnik/QTk0v4/djj3Mang/3VSsPzb5Tz7x43u/JOwFP3KE5D6ltzs/cPyYv9HBzD+1V4u//tOyv7F7lb7U77I9jo6jPj3cND+nXjXAADvIu0ghIL9wuo684D6mv6LHpjs+0tM9KCwZPN6TGsCXHp47Va1iPsncizywCFW//4GtPGc/db9g3si8nBaCPyTsBT9yhOQ+pbc7P3AWh78mZQNAlpKwwNa9r7/2OaK+53ePPY6Txz4kck0/wWA1wLkIx7tNsyG/gimnu0Jrmb8E/0Q8qXCYvWOivjwAmRrAqfjmuoVGbj1WnyQ9dvNUv5GytDtXzXS/rBudvJwWgj8k7AU/coTkPqW3Oz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAC/x820AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAXA0zPQAAAABPq9y/AAAAAPwP0b0AAAAA9+DyPwAAAAAc5Lk8AAAAABwe8T8AAAAAMxrXvQAAAAC+X+i/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5toBNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPn2+L0AAAAACePmvwAAAACBjKc9AAAAAL5T8z8AAAAAQKaBvQAAAABR/P8/AAAAANRccT0AAAAAcvDavwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1lq7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBU9448AAAAALoC6r8AAAAAGnmwvAAAAABJJQFAAAAAAJMaZ70AAAAA30nfPwAAAAA70PQ9AAAAAAx67L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD1xKc0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA9B4LPgAAAABZ+fa/AAAAAFPfzjwAAAAAi2/2PwAAAACBPTc9AAAAAF+Y8j8AAAAA4UaavQAAAAAMmeC/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJWcdX2dupGMAWyUTegDjAF0lEdAsc3b5IpYtHV9lChoBkdAl6WrUPQOWmgHTegDaAhHQLHOuUb1h9d1fZQoaAZHQJYXLftQbddoB03oA2gIR0Cx0Cby1/lRdX2UKGgGR0CSAtF9a2WqaAdN6ANoCEdAsdEtBVuJlHV9lChoBkdAlEZPHT7VKGgHTegDaAhHQLHXzMajveB1fZQoaAZHQJRqsG+sYEZoB03oA2gIR0Cx2KN8ma6SdX2UKGgGR0CU6gnL7oB8aAdN6ANoCEdAsdoFtHhCMXV9lChoBkdAlTdqvaDf32gHTegDaAhHQLHav4xDb8F1fZQoaAZHQJXyeNyYG+toB03oA2gIR0Cx34aaG5+ZdX2UKGgGR0CZ+pG47Rv4aAdN6ANoCEdAseCc1n/T9nV9lChoBkdAld/tUwSJ0mgHTegDaAhHQLHi3G3nZCh1fZQoaAZHQJXuhTcZccFoB03oA2gIR0Cx5BPpUxVRdX2UKGgGR0CRIFBqKxcFaAdN6ANoCEdAsemMrJ8v3HV9lChoBkdAmAnaFdszmGgHTegDaAhHQLHqZTisGPh1fZQoaAZHQJcUZgpjMFFoB03oA2gIR0Cx68U0Nz8xdX2UKGgGR0CcdHYzi0fHaAdN6ANoCEdAseyKdiDujXV9lChoBkdAjOjOJ+DvmmgHTegDaAhHQLHyiTt9hJB1fZQoaAZHQJughnQID5loB03oA2gIR0Cx8+nyI55rdX2UKGgGR0CXxOM1jy4GaAdN6ANoCEdAsfW+tFKChHV9lChoBkdAlFkCydFvymgHTegDaAhHQLH2fG8mKIl1fZQoaAZHQIiEZ8KG+K1oB03oA2gIR0Cx+3e9WZJDdX2UKGgGR0CUfy8KG+K1aAdN6ANoCEdAsfxXyvs7dXV9lChoBkdAmxXPhddE9mgHTegDaAhHQLH9vgGr0at1fZQoaAZHQJkfdqM3qA1oB03oA2gIR0Cx/nyWE9McdX2UKGgGR0CQmz78ejmCaAdN6ANoCEdAsgV22hIvrXV9lChoBkdAmrgBMi8nNWgHTegDaAhHQLIGV8rZrYZ1fZQoaAZHQJh8G43FUAFoB03oA2gIR0CyB8pwOvt/dX2UKGgGR0CXCMfAbhm5aAdN6ANoCEdAsgiG0mdAgXV9lChoBkdAlWcMvVVghWgHTegDaAhHQLINi7qptJp1fZQoaAZHQJZgURK6FuhoB03oA2gIR0CyDmdh/iHZdX2UKGgGR0CZxYq4pc5baAdN6ANoCEdAshB3n4fwJHV9lChoBkdAmBLhz7uUlmgHTegDaAhHQLIRog1FYuF1fZQoaAZHQJksoLeANG5oB03oA2gIR0CyF3j+rELqdX2UKGgGR0CQFLUNrj5saAdN6ANoCEdAshhSs5n14HV9lChoBkdAl2L912aDw2gHTegDaAhHQLIZsxLkCFN1fZQoaAZHQJfUErXlKbtoB03oA2gIR0CyGmsdcSoPdX2UKGgGR0CTWxtvXK8taAdN6ANoCEdAsiAAKa5PM3V9lChoBkdAl0SHUYsND2gHTegDaAhHQLIhaAh0Qsh1fZQoaAZHQJUlnrD63y9oB03oA2gIR0CyI5yJO32FdX2UKGgGR0CWAA03fhuPaAdN6ANoCEdAsiRcnc+JQHV9lChoBkdAllamMKkVOGgHTegDaAhHQLIpNDZDiOx1fZQoaAZHQJgZHPAwfyRoB03oA2gIR0CyKgrMcIZ7dX2UKGgGR0CTmEvboKUnaAdN6ANoCEdAsit0E7nxKHV9lChoBkdAlbJza9K28mgHTegDaAhHQLIsMA/cFhZ1fZQoaAZHQJYg9Du0CzVoB03oA2gIR0CyMxjl90A+dX2UKGgGR0CXK3d+5OJtaAdN6ANoCEdAsjP61WsBAHV9lChoBkdAlPhj6nBLwmgHTegDaAhHQLI1VWbwz+F1fZQoaAZHQJYnwJeE7GNoB03oA2gIR0CyNgvIn0CjdX2UKGgGR0CUVHScbzbwaAdN6ANoCEdAsjrvJ5mh/XV9lChoBkdAjKCPGIbfg2gHTegDaAhHQLI7z8Yht+F1fZQoaAZHQIzbBe9i+cpoB03oA2gIR0CyPU22gFotdX2UKGgGR0CXmlA8jiXIaAdN6ANoCEdAsj5plSS/03V9lChoBkdAlRRScwxnF2gHTegDaAhHQLJE+5YYBNp1fZQoaAZHQJcakrTYukFoB03oA2gIR0CyRde2JBPbdX2UKGgGR0CRQhUc4o7WaAdN6ANoCEdAskc7Khcqv3V9lChoBkdAk7FEzCUHIWgHTegDaAhHQLJICyeZof11fZQoaAZHQJRrxG7SRbNoB03oA2gIR0CyTRRR2r4ndX2UKGgGR0CR4L7laKUFaAdN6ANoCEdAsk5R93KSxXV9lChoBkdAkKWduUD+zmgHTegDaAhHQLJQjy6MBIZ1fZQoaAZHQJGkTOfNA1NoB03oA2gIR0CyUbvgR9PUdX2UKGgGR0CVCeuYhMakaAdN6ANoCEdAsla5K9PDYXV9lChoBkdAlH5uuA7Pp2gHTegDaAhHQLJXmKKpDNR1fZQoaAZHQJWQq7pV0cRoB03oA2gIR0CyWQ/va11GdX2UKGgGR0CT61gKnei0aAdN6ANoCEdAslnV+YtxuXV9lChoBkdAk4jEnPVurWgHTegDaAhHQLJgSFdLQHB1fZQoaAZHQJYZkijcmBxoB03oA2gIR0CyYa/X9R77dX2UKGgGR0CR9OuRcNYsaAdN6ANoCEdAsmMdnbqQinV9lChoBkdAlSFHObAk9mgHTegDaAhHQLJj1wx33Yd1fZQoaAZHQJU1bgOz6adoB03oA2gIR0CyaMAyIpH7dX2UKGgGR0CRHC1mapgkaAdN6ANoCEdAsmma+HrQgXV9lChoBkdAksVHrD63zGgHTegDaAhHQLJrAZRbbDd1fZQoaAZHQJVoH39JjDtoB03oA2gIR0Cya8CLIgeSdX2UKGgGR0CQmn2ZiNKiaAdN6ANoCEdAsnK4sRQJonV9lChoBkdAjr+GZE2HcmgHTegDaAhHQLJzm7CBPKx1fZQoaAZHQI9zjOcDr7hoB03oA2gIR0CydRSjgydndX2UKGgGR0CRYi2CNCJGaAdN6ANoCEdAsnXQEt/WlXV9lChoBkdAjLldPtUn5WgHTegDaAhHQLJ62zGgi/x1fZQoaAZHQIZKoTCcf/5oB03oA2gIR0CyfAd+LFXJdX2UKGgGR0CFQeyGBWgfaAdN6ANoCEdAsn5Y0IkZ8HV9lChoBkdAj1JowM6RyWgHTegDaAhHQLJ/ijAi3Xt1fZQoaAZHQImynMdLg4xoB03oA2gIR0CyhQglKK51dX2UKGgGR0CNOBGDtgKGaAdN6ANoCEdAsoXqz9jwx3V9lChoBkdAlHgl2NedCmgHTegDaAhHQLKHTRyfcvd1fZQoaAZHQItNg2Q4jr1oB03oA2gIR0CyiARO1v2odX2UKGgGR0CN/prC3w1BaAdN6ANoCEdAso5OBtk4FXV9lChoBkdAi/qwFs54nmgHTegDaAhHQLKPry6tknV1fZQoaAZHQJH0VJCjUNNoB03oA2gIR0CykU8uanaWdX2UKGgGR0CItl2YfGMoaAdN6ANoCEdAspITOX3QD3V9lChoBkdAkeQb2L5yl2gHTegDaAhHQLKXHDdgv111fZQoaAZHQJAchX7tReloB03oA2gIR0Cyl/7b5/LDdX2UKGgGR0CHKZ3Zf2K3aAdN6ANoCEdAspl4YFaB7XV9lChoBkdAlXBafOD8L2gHTegDaAhHQLKaO690zTF1fZQoaAZHQIkpXcN6PbRoB03oA2gIR0CyoSPxUedTdX2UKGgGR0CPhsWdEsreaAdN6ANoCEdAsqIM3uNPxnV9lChoBkdAhZbygXdj5WgHTegDaAhHQLKjf03fhuR1fZQoaAZHQI2UAhMajvdoB03oA2gIR0CypDl/MGHIdX2UKGgGR0CG4gjafzz3aAdN6ANoCEdAsqlEnTiKi3V9lChoBkdAjApouGsV+WgHTegDaAhHQLKqV+1Bt1p1fZQoaAZHQILuvfMwDeVoB03oA2gIR0CyrI7v1DjSdX2UKGgGR0CCJOjrzGxVaAdN6ANoCEdAsq27UZvUBnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (488 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 654.655172422035, "std_reward": 99.79536065765723, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-20T14:11:00.532717"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ae088e0d5c371ee7941fcdcab3ef57b7c0941abb059c8ce93b43dd95aada6ffb
3
+ size 2176