--- base_model: vinai/phobert-base-v2 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: PhoBERT-cls-OCR results: [] --- # PhoBERT-cls-OCR This model is a fine-tuned version of [vinai/phobert-base-v2](https://huggingface.co/vinai/phobert-base-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5182 - Accuracy: 0.8713 - F1: 0.8710 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.5631 | 1.0 | 25 | 0.4327 | 0.8119 | 0.8105 | | 0.3123 | 2.0 | 50 | 0.4440 | 0.8020 | 0.7971 | | 0.1806 | 3.0 | 75 | 0.4117 | 0.8515 | 0.8518 | | 0.1107 | 4.0 | 100 | 0.4446 | 0.8614 | 0.8607 | | 0.0729 | 5.0 | 125 | 0.4965 | 0.8713 | 0.8710 | | 0.0473 | 6.0 | 150 | 0.4914 | 0.8812 | 0.8799 | | 0.049 | 7.0 | 175 | 0.5021 | 0.8713 | 0.8710 | | 0.0255 | 8.0 | 200 | 0.5182 | 0.8713 | 0.8710 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3