--- license: mit --- # threatthriver/Gemma-7B-LoRA-Fine-Tuned ## Description This repository contains LoRA (Low-Rank Adaptation) adapter weights for fine-tuning a [Gemma 7B](https://huggingface.co/google/gemma2_9b_en) model on a custom dataset of [**briefly describe your dataset**]. **Important:** This is NOT a full model release. It only includes the LoRA adapter weights and a `config.json` to guide loading the model. You will need to write custom code to load the base Gemma model and apply the adapters. ## Model Fine-tuning Details - **Base Model:** [google/gemma2_9b_en](https://huggingface.co/google/gemma2_9b_en) - **Fine-tuning method:** LoRA ([https://arxiv.org/abs/2106.09685](https://arxiv.org/abs/2106.09685)) - **LoRA rank:** 8 - **Dataset:** [**Briefly describe your dataset and provide a link if possible**] - **Training framework:** KerasNLP ## How to Use This model release is not directly compatible with the `transformers` library's standard loading methods. You will need to: 1. **Load the Base Gemma Model:** Use KerasNLP to load the `google/gemma2_9b_en` base model. 2. **Enable LoRA:** Use KerasNLP's LoRA functionality to enable adapters on the appropriate layers of the Gemma model. 3. **Load Adapter Weights:** Load the `adapter_model.bin` and other relevant files from this repository to apply the fine-tuned adapter weights to the base Gemma model. 4. **Integration:** Integrate this custom loading process into your Hugging Face Transformers-based code. **Example Code Structure (Conceptual):** ```python import keras_nlp from transformers import GemmaTokenizerFast # Or appropriate tokenizer # ... Load base Gemma model using KerasNLP ... # ... Enable LoRA adapters on target layers ... # ... Load adapter weights from this repository ... # ... Use tokenizer, model for generation or other tasks ...