--- license: apache-2.0 library_name: pytorch tags: - seizure-detection - medical-imaging - cnn - healthcare - eeg pipeline_tag: image-classification --- # SeizureDetectionCNN ## Model Description SeizureDetectionCNN is a convolutional neural network designed for binary classification of seizure events using EEG data converted to images. The model employs a simple yet effective architecture with two convolutional layers followed by batch normalization and three fully connected layers. ### Model Architecture ```python SeizureDetectionCNN( (conv1): Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (pool): MaxPool2d(kernel_size=2, stride=2, padding=0) (conv2): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (bn1): BatchNorm2d(32) (bn2): BatchNorm2d(64) (dropout): Dropout(p=0.5) (fc1): Linear(in_features=4096, out_features=120) (fc2): Linear(in_features=120, out_features=32) (fc3): Linear(in_features=32, out_features=2) ) ``` ### Input Description Input images are preprocessed to 32x32 grayscale Images are normalized with mean=[0.5] and std=[0.5] Input tensor shape: (batch_size, 1, 32, 32) ### Preprocessing pythonCopytransforms.Compose([ transforms.Grayscale(), transforms.Resize((32, 32)), transforms.ToTensor(), transforms.Normalize(mean=[0.5], std=[0.5]) ]) ## Training Procedure ### Architectural Features 2 Convolutional layers with ReLU activation Batch Normalization after each convolutional layer MaxPooling with kernel size 2 Dropout (p=0.5) for regularization 3 Fully connected layers ### Parameters Total Parameters: ~500K Input Channels: 1 (grayscale) Output Classes: 2 (binary classification) ## Intended Uses & Limitations ### Intended Uses Research and development in seizure detection Processing of EEG data converted to image format Binary classification of seizure/non-seizure events