---
license: mit
license_link: https://huggingface.co/TheoVincent/Atari_i-QN/blob/main/LICENSE
tags:
- reinforcement-learning
- jax
- atari
co2_eq_emissions:
emissions: 3000000
---
# Model parameters trained with `i-DQN` and `i-IQN`
This repository contains the model parameters trained with `i-DQN` on [56 Atari games](#i-DQN_games) and trained with `i-IQN` on [20 Atari games](#i-IQN_games) 🎮. 5 seeds are available for each configuration which makes a total of 380 available models 📈.
The [evaluate.ipynb](./evaluate.ipynb) notebook contains a minimal example to evaluate to model parameters 🧑🏫. It uses JAX 🚀. The hyperparameters used during training are reported in [config.json](./config.json) 🔧.
ps: The set of [20 Atari games](#i-DQN_games) is included in the set of [56 Atari games](#i-IQN_games).
### Model performances
|
`i-DQN` and `i-IQN` are improvements made over [`DQN`](https://www.nature.com/articles/nature14236.pdf) and [`IQN`](https://arxiv.org/abs/1806.06923) ✨. Check the paper on [arXiv](https://arxiv.org/abs/2403.02107)! List of games trained with `i-DQN`
*Alien, Amidar, Assault, Asterix, Asteroids, Atlantis, BankHeist, BattleZone, BeamRider, Berzerk, Bowling, Boxing, Breakout, Centipede, ChopperCommand, CrazyClimber, DemonAttack, DoubleDunk, Enduro, FishingDerby, Freeway, Frostbite, Gopher, Gravitar, Hero, IceHockey, Jamesbond, Kangaroo, Krull, KungFuMaster, MontezumaRevenge, MsPacman, NameThisGame, Phoenix, Pitfall, Pong, Pooyan, PrivateEye, Qbert, Riverraid, RoadRunner, Robotank, Seaquest, Skiing, Solaris, SpaceInvaders, StarGunner, Tennis, TimePilot, Tutankham, UpNDown, Venture, VideoPinball, WizardOfWor, YarsRevenge, Zaxxon.* List of games trained with `i-IQN`
*Alien, Assault, BankHeist, Berzerk, Breakout, Centipede, ChopperCommand, DemonAttack, Enduro, Frostbite, Gopher, Gravitar, IceHockey, Jamesbond, Krull, KungFuMaster, Riverraid, Seaquest, Skiing, StarGunner.*
| |
| :-: | :-: |
## User installation
Python 3.10 is recommended. Create a Python virtual environment, activate it, update pip and install the package and its dependencies in editable mode:
```bash
python3.10 -m venv env
source env/bin/activate
pip install --upgrade pip
pip install numpy==1.23.5 # to avoid numpy==2.XX
pip install -r requirements.txt
pip install --upgrade "jax[cuda12_pip]==0.4.13" -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html
```
## Citing `i-QN`
```
@article{vincent2024iterated,
title={Iterated $ Q $-Network: Beyond the One-Step Bellman Operator},
author={Vincent, Th{\'e}o and Palenicek, Daniel and Belousov, Boris and Peters, Jan and D'Eramo, Carlo},
journal={arXiv preprint arXiv:2403.02107},
year={2024}
}
```