--- base_model: UBC-NLP/MARBERTv2 tags: - generated_from_trainer metrics: - accuracy model-index: - name: Arsarcasm results: [] --- # Arsarcasm This model is a fine-tuned version of [UBC-NLP/MARBERTv2](https://huggingface.co/UBC-NLP/MARBERTv2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3985 - Accuracy: 0.8757 - F1 Weighted: 0.8778 - Roc Auc: 0.7900 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Weighted | Roc Auc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:-------:| | 0.3098 | 1.0 | 1050 | 0.3747 | 0.8634 | 0.8383 | 0.6305 | | 0.2456 | 2.0 | 2100 | 0.3985 | 0.8757 | 0.8778 | 0.7900 | | 0.1446 | 3.0 | 3150 | 0.5968 | 0.8786 | 0.8711 | 0.7262 | | 0.0932 | 4.0 | 4200 | 0.6484 | 0.8738 | 0.8737 | 0.7678 | | 0.0556 | 5.0 | 5250 | 0.7629 | 0.8767 | 0.8745 | 0.7578 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.2 - Datasets 2.1.0 - Tokenizers 0.15.2