--- language: - en license: llama2 model_name: Fiction Live Kimiko V2 70B inference: false model_creator: nRuaif model_link: https://huggingface.co/nRuaif/fiction.live-Kimiko-V2-70B model_type: llama pipeline_tag: text-generation quantized_by: TheBloke base_model: nRuaif/fiction.live-Kimiko-V2-70B ---
TheBlokeAI

Chat & support: TheBloke's Discord server

Want to contribute? TheBloke's Patreon page

TheBloke's LLM work is generously supported by a grant from andreessen horowitz (a16z)


# Fiction Live Kimiko V2 70B - GGML - Model creator: [nRuaif](https://huggingface.co/nRuaif) - Original model: [Fiction Live Kimiko V2 70B](https://huggingface.co/nRuaif/fiction.live-Kimiko-V2-70B) ## Description This repo contains GGML format model files for [nRuaif's Fiction Live Kimiko V2 70B](https://huggingface.co/nRuaif/fiction.live-Kimiko-V2-70B). ### Important note regarding GGML files. The GGML format has now been superseded by GGUF. As of August 21st 2023, [llama.cpp](https://github.com/ggerganov/llama.cpp) no longer supports GGML models. Third party clients and libraries are expected to still support it for a time, but many may also drop support. Please use the GGUF models instead. ### About GGML GPU acceleration is now available for Llama 2 70B GGML files, with both CUDA (NVidia) and Metal (macOS). The following clients/libraries are known to work with these files, including with GPU acceleration: * [llama.cpp](https://github.com/ggerganov/llama.cpp), commit `e76d630` and later. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), version 1.37 and later. A powerful GGML web UI, especially good for story telling. * [LM Studio](https://lmstudio.ai/), a fully featured local GUI with GPU acceleration for both Windows and macOS. Use 0.1.11 or later for macOS GPU acceleration with 70B models. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), version 0.1.77 and later. A Python library with LangChain support, and OpenAI-compatible API server. * [ctransformers](https://github.com/marella/ctransformers), version 0.2.15 and later. A Python library with LangChain support, and OpenAI-compatible API server. ## Repositories available * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/fiction.live-Kimiko-V2-70B-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/fiction.live-Kimiko-V2-70B-GGUF) * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/fiction.live-Kimiko-V2-70B-GGML) * [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/TheBloke/fiction.live-Kimiko-V2-70B-fp16) * [nRuaif's original LoRA adapter, which can be merged on to the base model.](https://huggingface.co/nRuaif/fiction.live-Kimiko-V2-70B) ## Prompt template: Vicuna ``` A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT: ``` ## Compatibility ### Works with llama.cpp [commit `e76d630`](https://github.com/ggerganov/llama.cpp/commit/e76d630df17e235e6b9ef416c45996765d2e36fb) until August 21st, 2023 Will not work with `llama.cpp` after commit [dadbed99e65252d79f81101a392d0d6497b86caa](https://github.com/ggerganov/llama.cpp/commit/dadbed99e65252d79f81101a392d0d6497b86caa). For compatibility with latest llama.cpp, please use GGUF files instead. Or one of the other tools and libraries listed above. To use in llama.cpp, you must add `-gqa 8` argument. For other UIs and libraries, please check the docs. ## Explanation of the new k-quant methods
Click to see details The new methods available are: * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw) * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw. * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw. * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw * GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type. Refer to the Provided Files table below to see what files use which methods, and how.
## Provided files | Name | Quant method | Bits | Size | Max RAM required | Use case | | ---- | ---- | ---- | ---- | ---- | ----- | | [fiction.live-Kimiko-V2-70B.ggmlv3.Q2_K.bin](https://huggingface.co/TheBloke/fiction.live-Kimiko-V2-70B-GGML/blob/main/fiction.live-Kimiko-V2-70B.ggmlv3.Q2_K.bin) | Q2_K | 2 | 28.59 GB| 31.09 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. | | [fiction.live-Kimiko-V2-70B.ggmlv3.Q3_K_S.bin](https://huggingface.co/TheBloke/fiction.live-Kimiko-V2-70B-GGML/blob/main/fiction.live-Kimiko-V2-70B.ggmlv3.Q3_K_S.bin) | Q3_K_S | 3 | 29.75 GB| 32.25 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors | | [fiction.live-Kimiko-V2-70B.ggmlv3.Q3_K_M.bin](https://huggingface.co/TheBloke/fiction.live-Kimiko-V2-70B-GGML/blob/main/fiction.live-Kimiko-V2-70B.ggmlv3.Q3_K_M.bin) | Q3_K_M | 3 | 33.04 GB| 35.54 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K | | [fiction.live-Kimiko-V2-70B.ggmlv3.Q3_K_L.bin](https://huggingface.co/TheBloke/fiction.live-Kimiko-V2-70B-GGML/blob/main/fiction.live-Kimiko-V2-70B.ggmlv3.Q3_K_L.bin) | Q3_K_L | 3 | 36.15 GB| 38.65 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K | | [fiction.live-Kimiko-V2-70B.ggmlv3.Q4_0.bin](https://huggingface.co/TheBloke/fiction.live-Kimiko-V2-70B-GGML/blob/main/fiction.live-Kimiko-V2-70B.ggmlv3.Q4_0.bin) | Q4_0 | 4 | 38.87 GB| 41.37 GB | Original quant method, 4-bit. | | [fiction.live-Kimiko-V2-70B.ggmlv3.Q4_K_S.bin](https://huggingface.co/TheBloke/fiction.live-Kimiko-V2-70B-GGML/blob/main/fiction.live-Kimiko-V2-70B.ggmlv3.Q4_K_S.bin) | Q4_K_S | 4 | 38.87 GB| 41.37 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors | | [fiction.live-Kimiko-V2-70B.ggmlv3.Q4_K_M.bin](https://huggingface.co/TheBloke/fiction.live-Kimiko-V2-70B-GGML/blob/main/fiction.live-Kimiko-V2-70B.ggmlv3.Q4_K_M.bin) | Q4_K_M | 4 | 41.38 GB| 43.88 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K | | [fiction.live-Kimiko-V2-70B.ggmlv3.Q4_1.bin](https://huggingface.co/TheBloke/fiction.live-Kimiko-V2-70B-GGML/blob/main/fiction.live-Kimiko-V2-70B.ggmlv3.Q4_1.bin) | Q4_1 | 4 | 43.17 GB| 45.67 GB | Original quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. | | [fiction.live-Kimiko-V2-70B.ggmlv3.Q5_0.bin](https://huggingface.co/TheBloke/fiction.live-Kimiko-V2-70B-GGML/blob/main/fiction.live-Kimiko-V2-70B.ggmlv3.Q5_0.bin) | Q5_0 | 5 | 47.46 GB| 49.96 GB | Original quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. | | [fiction.live-Kimiko-V2-70B.ggmlv3.Q5_K_S.bin](https://huggingface.co/TheBloke/fiction.live-Kimiko-V2-70B-GGML/blob/main/fiction.live-Kimiko-V2-70B.ggmlv3.Q5_K_S.bin) | Q5_K_S | 5 | 47.46 GB| 49.96 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors | | [fiction.live-Kimiko-V2-70B.ggmlv3.Q5_K_M.bin](https://huggingface.co/TheBloke/fiction.live-Kimiko-V2-70B-GGML/blob/main/fiction.live-Kimiko-V2-70B.ggmlv3.Q5_K_M.bin) | Q5_K_M | 5 | 48.75 GB| 51.25 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K | **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead. ## How to run in `llama.cpp` Make sure you are using `llama.cpp` from commit [dadbed99e65252d79f81101a392d0d6497b86caa](https://github.com/ggerganov/llama.cpp/commit/dadbed99e65252d79f81101a392d0d6497b86caa) or earlier. For compatibility with latest llama.cpp, please use GGUF files instead. I use the following command line; adjust for your tastes and needs: ``` ./main -t 10 -ngl 40 -gqa 8 -m fiction.live-Kimiko-V2-70B.ggmlv3.q4_K_M.bin --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: Write a story about llamas ASSISTANT:" ``` Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`. If you are fully offloading the model to GPU, use `-t 1` Change `-ngl 40` to the number of GPU layers you have VRAM for. Use `-ngl 100` to offload all layers to VRAM - if you have a 48GB card, or 2 x 24GB, or similar. Otherwise you can partially offload as many as you have VRAM for, on one or more GPUs. If you want to have a chat-style conversation, replace the `-p ` argument with `-i -ins` Remember the `-gqa 8` argument, required for Llama 70B models. Change `-c 4096` to the desired sequence length for this model. For models that use RoPE, add `--rope-freq-base 10000 --rope-freq-scale 0.5` for doubled context, or `--rope-freq-base 10000 --rope-freq-scale 0.25` for 4x context. For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md) ## How to run in `text-generation-webui` Further instructions here: [text-generation-webui/docs/llama.cpp-models.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp-models.md). ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute. Thanks to the [chirper.ai](https://chirper.ai) team! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Kacper Wikieł, knownsqashed, Leonard Tan, Asp the Wyvern, Daniel P. Andersen, Luke Pendergrass, Stanislav Ovsiannikov, RoA, Dave, Ai Maven, Kalila, Will Dee, Imad Khwaja, Nitin Borwankar, Joseph William Delisle, Tony Hughes, Cory Kujawski, Rishabh Srivastava, Russ Johnson, Stephen Murray, Lone Striker, Johann-Peter Hartmann, Elle, J, Deep Realms, SuperWojo, Raven Klaugh, Sebastain Graf, ReadyPlayerEmma, Alps Aficionado, Mano Prime, Derek Yates, Gabriel Puliatti, Mesiah Bishop, Magnesian, Sean Connelly, biorpg, Iucharbius, Olakabola, Fen Risland, Space Cruiser, theTransient, Illia Dulskyi, Thomas Belote, Spencer Kim, Pieter, John Detwiler, Fred von Graf, Michael Davis, Swaroop Kallakuri, subjectnull, Clay Pascal, Subspace Studios, Chris Smitley, Enrico Ros, usrbinkat, Steven Wood, alfie_i, David Ziegler, Willem Michiel, Matthew Berman, Andrey, Pyrater, Jeffrey Morgan, vamX, LangChain4j, Luke @flexchar, Trenton Dambrowitz, Pierre Kircher, Alex, Sam, James Bentley, Edmond Seymore, Eugene Pentland, Pedro Madruga, Rainer Wilmers, Dan Guido, Nathan LeClaire, Spiking Neurons AB, Talal Aujan, zynix, Artur Olbinski, Michael Levine, 阿明, K, John Villwock, Nikolai Manek, Femi Adebogun, senxiiz, Deo Leter, NimbleBox.ai, Viktor Bowallius, Geoffrey Montalvo, Mandus, Ajan Kanaga, ya boyyy, Jonathan Leane, webtim, Brandon Frisco, danny, Alexandros Triantafyllidis, Gabriel Tamborski, Randy H, terasurfer, Vadim, Junyu Yang, Vitor Caleffi, Chadd, transmissions 11 Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. # Original model card: nRuaif's Fiction Live Kimiko V2 70B ## Sponsor Thanks to fiction.live for sponsoring this finetune and make this a reality. ## Model Details [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) ### Model Description - **Developed by:** nRuaif - **Model type:** large language model - **License:** - **Finetuned from model [optional]:** Llama-70B ### Model Sources [optional] ## Uses The model uses Fastchat/ShareGPT format. ### Direct Use This model is finetuned for normal and erotic roleplay while can still an assistant. (Might not be a helpfull one through) ### Out-of-Scope Use Do anything you want. I don't care ## Bias, Risks, and Limitations Model might have bias to NSFW due to the large % of NSFW data in the training set. ## Training Details ### Training Data 3000 convos with 4090 cut off len. ### Training Procedure #### Training Hyperparameters - **Training regime:** BF16, QLoRA, constant LR 5e-5 ### Compute Infrastructure The model is trained on 1 A100 for 10 hours on runpod.