TheBloke commited on
Commit
76b48d9
·
1 Parent(s): 51d1570

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +42 -18
README.md CHANGED
@@ -1,14 +1,26 @@
1
  ---
 
2
  datasets:
3
  - rombodawg/Legacy_MegaCodeTraining200k
4
  inference: false
5
  language:
6
  - en
7
- license: llama2
8
  model_creator: DeepSE
9
- model_link: https://huggingface.co/deepse/CodeUp-alpha-13b-hf
10
  model_name: CodeUp Alpha 13B HF
11
  model_type: llama
 
 
 
 
 
 
 
 
 
 
 
 
12
  quantized_by: TheBloke
13
  tags:
14
  - text-to-code
@@ -47,9 +59,9 @@ Multiple GPTQ parameter permutations are provided; see Provided Files below for
47
  <!-- repositories-available start -->
48
  ## Repositories available
49
 
 
50
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/CodeUp-Alpha-13B-HF-GPTQ)
51
  * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/CodeUp-Alpha-13B-HF-GGUF)
52
- * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/CodeUp-Alpha-13B-HF-GGML)
53
  * [DeepSE's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/deepse/CodeUp-alpha-13b-hf)
54
  <!-- repositories-available end -->
55
 
@@ -67,7 +79,15 @@ Below is an instruction that describes a task. Write a response that appropriate
67
  ```
68
 
69
  <!-- prompt-template end -->
 
 
 
 
70
 
 
 
 
 
71
  <!-- README_GPTQ.md-provided-files start -->
72
  ## Provided files and GPTQ parameters
73
 
@@ -92,22 +112,22 @@ All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches
92
 
93
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
94
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
95
- | [main](https://huggingface.co/TheBloke/CodeUp-Alpha-13B-HF-GPTQ/tree/main) | 4 | 128 | No | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 4096 | 7.26 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
96
- | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/CodeUp-Alpha-13B-HF-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 4096 | 8.00 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
97
- | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/CodeUp-Alpha-13B-HF-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 4096 | 7.51 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
98
- | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/CodeUp-Alpha-13B-HF-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 4096 | 7.26 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
99
- | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/CodeUp-Alpha-13B-HF-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 4096 | 13.36 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
100
- | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/CodeUp-Alpha-13B-HF-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 4096 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
101
 
102
  <!-- README_GPTQ.md-provided-files end -->
103
 
104
  <!-- README_GPTQ.md-download-from-branches start -->
105
  ## How to download from branches
106
 
107
- - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/CodeUp-Alpha-13B-HF-GPTQ:gptq-4bit-32g-actorder_True`
108
  - With Git, you can clone a branch with:
109
  ```
110
- git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/CodeUp-Alpha-13B-HF-GPTQ
111
  ```
112
  - In Python Transformers code, the branch is the `revision` parameter; see below.
113
  <!-- README_GPTQ.md-download-from-branches end -->
@@ -120,7 +140,7 @@ It is strongly recommended to use the text-generation-webui one-click-installers
120
 
121
  1. Click the **Model tab**.
122
  2. Under **Download custom model or LoRA**, enter `TheBloke/CodeUp-Alpha-13B-HF-GPTQ`.
123
- - To download from a specific branch, enter for example `TheBloke/CodeUp-Alpha-13B-HF-GPTQ:gptq-4bit-32g-actorder_True`
124
  - see Provided Files above for the list of branches for each option.
125
  3. Click **Download**.
126
  4. The model will start downloading. Once it's finished it will say "Done".
@@ -168,10 +188,10 @@ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
168
 
169
  model_name_or_path = "TheBloke/CodeUp-Alpha-13B-HF-GPTQ"
170
  # To use a different branch, change revision
171
- # For example: revision="gptq-4bit-32g-actorder_True"
172
  model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
173
- torch_dtype=torch.float16,
174
  device_map="auto",
 
175
  revision="main")
176
 
177
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
@@ -189,7 +209,7 @@ prompt_template=f'''Below is an instruction that describes a task. Write a respo
189
  print("\n\n*** Generate:")
190
 
191
  input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
192
- output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512)
193
  print(tokenizer.decode(output[0]))
194
 
195
  # Inference can also be done using transformers' pipeline
@@ -200,9 +220,11 @@ pipe = pipeline(
200
  model=model,
201
  tokenizer=tokenizer,
202
  max_new_tokens=512,
 
203
  temperature=0.7,
204
  top_p=0.95,
205
- repetition_penalty=1.15
 
206
  )
207
 
208
  print(pipe(prompt_template)[0]['generated_text'])
@@ -227,10 +249,12 @@ For further support, and discussions on these models and AI in general, join us
227
 
228
  [TheBloke AI's Discord server](https://discord.gg/theblokeai)
229
 
230
- ## Thanks, and how to contribute.
231
 
232
  Thanks to the [chirper.ai](https://chirper.ai) team!
233
 
 
 
234
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
235
 
236
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
@@ -242,7 +266,7 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
242
 
243
  **Special thanks to**: Aemon Algiz.
244
 
245
- **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
246
 
247
 
248
  Thank you to all my generous patrons and donaters!
 
1
  ---
2
+ base_model: https://huggingface.co/deepse/CodeUp-alpha-13b-hf
3
  datasets:
4
  - rombodawg/Legacy_MegaCodeTraining200k
5
  inference: false
6
  language:
7
  - en
8
+ license: openrail++
9
  model_creator: DeepSE
 
10
  model_name: CodeUp Alpha 13B HF
11
  model_type: llama
12
+ prompt_template: 'Below is an instruction that describes a task. Write a response
13
+ that appropriately completes the request.
14
+
15
+
16
+ ### Instruction:
17
+
18
+ {prompt}
19
+
20
+
21
+ ### Response:
22
+
23
+ '
24
  quantized_by: TheBloke
25
  tags:
26
  - text-to-code
 
59
  <!-- repositories-available start -->
60
  ## Repositories available
61
 
62
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/CodeUp-Alpha-13B-HF-AWQ)
63
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/CodeUp-Alpha-13B-HF-GPTQ)
64
  * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/CodeUp-Alpha-13B-HF-GGUF)
 
65
  * [DeepSE's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/deepse/CodeUp-alpha-13b-hf)
66
  <!-- repositories-available end -->
67
 
 
79
  ```
80
 
81
  <!-- prompt-template end -->
82
+ <!-- licensing start -->
83
+ ## Licensing
84
+
85
+ The creator of the source model has listed its license as `openrail++`, and this quantization has therefore used that same license.
86
 
87
+ As this model is based on Llama 2, it is also subject to the Meta Llama 2 license terms, and the license files for that are additionally included. It should therefore be considered as being claimed to be licensed under both licenses. I contacted Hugging Face for clarification on dual licensing but they do not yet have an official position. Should this change, or should Meta provide any feedback on this situation, I will update this section accordingly.
88
+
89
+ In the meantime, any questions regarding licensing, and in particular how these two licenses might interact, should be directed to the original model repository: [DeepSE's CodeUp Alpha 13B HF](https://huggingface.co/deepse/CodeUp-alpha-13b-hf).
90
+ <!-- licensing end -->
91
  <!-- README_GPTQ.md-provided-files start -->
92
  ## Provided files and GPTQ parameters
93
 
 
112
 
113
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
114
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
115
+ | [main](https://huggingface.co/TheBloke/CodeUp-Alpha-13B-HF-GPTQ/tree/main) | 4 | 128 | No | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 4096 | 7.26 GB | Yes | 4-bit, without Act Order and group size 128g. |
116
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/CodeUp-Alpha-13B-HF-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 4096 | 8.00 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
117
+ | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/CodeUp-Alpha-13B-HF-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 4096 | 7.51 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. |
118
+ | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/CodeUp-Alpha-13B-HF-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 4096 | 7.26 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
119
+ | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/CodeUp-Alpha-13B-HF-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 4096 | 13.36 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. |
120
+ | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/CodeUp-Alpha-13B-HF-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 4096 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. |
121
 
122
  <!-- README_GPTQ.md-provided-files end -->
123
 
124
  <!-- README_GPTQ.md-download-from-branches start -->
125
  ## How to download from branches
126
 
127
+ - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/CodeUp-Alpha-13B-HF-GPTQ:main`
128
  - With Git, you can clone a branch with:
129
  ```
130
+ git clone --single-branch --branch main https://huggingface.co/TheBloke/CodeUp-Alpha-13B-HF-GPTQ
131
  ```
132
  - In Python Transformers code, the branch is the `revision` parameter; see below.
133
  <!-- README_GPTQ.md-download-from-branches end -->
 
140
 
141
  1. Click the **Model tab**.
142
  2. Under **Download custom model or LoRA**, enter `TheBloke/CodeUp-Alpha-13B-HF-GPTQ`.
143
+ - To download from a specific branch, enter for example `TheBloke/CodeUp-Alpha-13B-HF-GPTQ:main`
144
  - see Provided Files above for the list of branches for each option.
145
  3. Click **Download**.
146
  4. The model will start downloading. Once it's finished it will say "Done".
 
188
 
189
  model_name_or_path = "TheBloke/CodeUp-Alpha-13B-HF-GPTQ"
190
  # To use a different branch, change revision
191
+ # For example: revision="main"
192
  model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
 
193
  device_map="auto",
194
+ trust_remote_code=False,
195
  revision="main")
196
 
197
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
 
209
  print("\n\n*** Generate:")
210
 
211
  input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
212
+ output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
213
  print(tokenizer.decode(output[0]))
214
 
215
  # Inference can also be done using transformers' pipeline
 
220
  model=model,
221
  tokenizer=tokenizer,
222
  max_new_tokens=512,
223
+ do_sample=True,
224
  temperature=0.7,
225
  top_p=0.95,
226
+ top_k=40,
227
+ repetition_penalty=1.1
228
  )
229
 
230
  print(pipe(prompt_template)[0]['generated_text'])
 
249
 
250
  [TheBloke AI's Discord server](https://discord.gg/theblokeai)
251
 
252
+ ## Thanks, and how to contribute
253
 
254
  Thanks to the [chirper.ai](https://chirper.ai) team!
255
 
256
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
257
+
258
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
259
 
260
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
 
266
 
267
  **Special thanks to**: Aemon Algiz.
268
 
269
+ **Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov
270
 
271
 
272
  Thank you to all my generous patrons and donaters!