Initial GPTQ model commit
Browse files- quantizer.py +211 -0
quantizer.py
ADDED
|
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import bitsandbytes as bnb
|
| 2 |
+
from accelerate import init_empty_weights
|
| 3 |
+
from bitsandbytes.nn.modules import Params4bit, Int8Params
|
| 4 |
+
import torch
|
| 5 |
+
|
| 6 |
+
def Params4bitCuda(self, device):
|
| 7 |
+
self.data = self.data.cuda(device)
|
| 8 |
+
self.quant_state[0] = self.quant_state[0].cuda(device)
|
| 9 |
+
self.quant_state[4][0] = self.quant_state[4][0].cuda(device)
|
| 10 |
+
self.quant_state[4][1][0] = self.quant_state[4][1][0].cuda(device)
|
| 11 |
+
self.quant_state[4][1][1] = self.quant_state[4][1][1].cuda(device)
|
| 12 |
+
|
| 13 |
+
self.quant_state[6] = self.quant_state[6].cuda(device)
|
| 14 |
+
return self
|
| 15 |
+
|
| 16 |
+
class Linear4bitOnline(torch.nn.Module):
|
| 17 |
+
def __init__(self, weight, bias, quant_type):
|
| 18 |
+
super().__init__()
|
| 19 |
+
self.weight = Params4bit(
|
| 20 |
+
weight.data, requires_grad=False, compress_statistics=True, quant_type=quant_type
|
| 21 |
+
)
|
| 22 |
+
self.compute_dtype = None
|
| 23 |
+
#self.weight.cuda(weight.device)
|
| 24 |
+
self.bias = bias
|
| 25 |
+
|
| 26 |
+
def forward(self, x: torch.Tensor):
|
| 27 |
+
# weights are cast automatically as Int8Params, but the bias has to be cast manually
|
| 28 |
+
if self.bias is not None and self.bias.dtype != x.dtype:
|
| 29 |
+
self.bias.data = self.bias.data.to(x.dtype)
|
| 30 |
+
|
| 31 |
+
if getattr(self.weight, "quant_state", None) is None:
|
| 32 |
+
print(
|
| 33 |
+
"FP4 quantization state not initialized. Please call .cuda() or .to(device) on the LinearFP4 layer first."
|
| 34 |
+
)
|
| 35 |
+
inp_dtype = x.dtype
|
| 36 |
+
if self.compute_dtype is not None:
|
| 37 |
+
x = x.to(self.compute_dtype)
|
| 38 |
+
|
| 39 |
+
bias = None if self.bias is None else self.bias.to(self.compute_dtype)
|
| 40 |
+
out = bnb.matmul_4bit(
|
| 41 |
+
x, self.weight.t(), bias=bias, quant_state=self.weight.quant_state
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
out = out.to(inp_dtype)
|
| 45 |
+
|
| 46 |
+
return out
|
| 47 |
+
|
| 48 |
+
class Linear8bitLtOnline(torch.nn.Module):
|
| 49 |
+
def __init__(
|
| 50 |
+
self,
|
| 51 |
+
weight,
|
| 52 |
+
bias,
|
| 53 |
+
has_fp16_weights=True,
|
| 54 |
+
memory_efficient_backward=False,
|
| 55 |
+
threshold=0.0,
|
| 56 |
+
index=None,
|
| 57 |
+
):
|
| 58 |
+
super().__init__()
|
| 59 |
+
assert (
|
| 60 |
+
not memory_efficient_backward
|
| 61 |
+
), "memory_efficient_backward is no longer required and the argument is deprecated in 0.37.0 and will be removed in 0.39.0"
|
| 62 |
+
self.state = bnb.MatmulLtState()
|
| 63 |
+
self.index = index
|
| 64 |
+
|
| 65 |
+
# Necessary for stacked layers
|
| 66 |
+
self.state.threshold = threshold
|
| 67 |
+
self.state.has_fp16_weights = has_fp16_weights
|
| 68 |
+
self.state.memory_efficient_backward = memory_efficient_backward
|
| 69 |
+
if threshold > 0.0 and not has_fp16_weights:
|
| 70 |
+
self.state.use_pool = True
|
| 71 |
+
|
| 72 |
+
self.weight = Int8Params(
|
| 73 |
+
weight.data,
|
| 74 |
+
has_fp16_weights=has_fp16_weights,
|
| 75 |
+
requires_grad=has_fp16_weights,
|
| 76 |
+
)
|
| 77 |
+
self.bias = bias
|
| 78 |
+
|
| 79 |
+
def init_8bit_state(self):
|
| 80 |
+
self.state.CB = self.weight.CB
|
| 81 |
+
self.state.SCB = self.weight.SCB
|
| 82 |
+
self.weight.CB = None
|
| 83 |
+
self.weight.SCB = None
|
| 84 |
+
|
| 85 |
+
def forward(self, x: torch.Tensor):
|
| 86 |
+
self.state.is_training = self.training
|
| 87 |
+
if self.weight.CB is not None:
|
| 88 |
+
self.init_8bit_state()
|
| 89 |
+
|
| 90 |
+
# weights are cast automatically as Int8Params, but the bias has to be cast manually
|
| 91 |
+
if self.bias is not None and self.bias.dtype != x.dtype:
|
| 92 |
+
self.bias.data = self.bias.data.to(x.dtype)
|
| 93 |
+
|
| 94 |
+
out = bnb.matmul(x, self.weight, bias=self.bias, state=self.state)
|
| 95 |
+
|
| 96 |
+
if not self.state.has_fp16_weights:
|
| 97 |
+
if self.state.CB is not None and self.state.CxB is not None:
|
| 98 |
+
# we converted 8-bit row major to turing/ampere format in the first inference pass
|
| 99 |
+
# we no longer need the row-major weight
|
| 100 |
+
del self.state.CB
|
| 101 |
+
self.weight.data = self.state.CxB
|
| 102 |
+
return out
|
| 103 |
+
|
| 104 |
+
def quantize_offline(model, bits: int):
|
| 105 |
+
assert (bits == 4), f'bits: {bits} is not supported'
|
| 106 |
+
|
| 107 |
+
for i, layer in enumerate(model.model.layers):
|
| 108 |
+
layer.self_attn.W_pack = bnb.nn.Linear4bit(
|
| 109 |
+
layer.self_attn.W_pack.weight.shape[1],
|
| 110 |
+
layer.self_attn.W_pack.weight.shape[0],
|
| 111 |
+
False,
|
| 112 |
+
torch.float16,
|
| 113 |
+
compress_statistics=True,
|
| 114 |
+
quant_type="nf4",
|
| 115 |
+
)
|
| 116 |
+
layer.self_attn.o_proj = bnb.nn.Linear4bit(
|
| 117 |
+
layer.self_attn.o_proj.weight.shape[1],
|
| 118 |
+
layer.self_attn.o_proj.weight.shape[0],
|
| 119 |
+
False,
|
| 120 |
+
torch.float16,
|
| 121 |
+
compress_statistics=True,
|
| 122 |
+
quant_type="nf4",
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
layer.mlp.gate_proj = bnb.nn.Linear4bit(
|
| 126 |
+
layer.mlp.gate_proj.weight.shape[1],
|
| 127 |
+
layer.mlp.gate_proj.weight.shape[0],
|
| 128 |
+
False,
|
| 129 |
+
torch.float16,
|
| 130 |
+
compress_statistics=True,
|
| 131 |
+
quant_type="nf4",
|
| 132 |
+
)
|
| 133 |
+
layer.mlp.down_proj = bnb.nn.Linear4bit(
|
| 134 |
+
layer.mlp.down_proj.weight.shape[1],
|
| 135 |
+
layer.mlp.down_proj.weight.shape[0],
|
| 136 |
+
False,
|
| 137 |
+
torch.float16,
|
| 138 |
+
compress_statistics=True,
|
| 139 |
+
quant_type="nf4",
|
| 140 |
+
)
|
| 141 |
+
layer.mlp.up_proj = bnb.nn.Linear4bit(
|
| 142 |
+
layer.mlp.up_proj.weight.shape[1],
|
| 143 |
+
layer.mlp.up_proj.weight.shape[0],
|
| 144 |
+
False,
|
| 145 |
+
torch.float16,
|
| 146 |
+
compress_statistics=True,
|
| 147 |
+
quant_type="nf4",
|
| 148 |
+
)
|
| 149 |
+
return model
|
| 150 |
+
|
| 151 |
+
def quantize_online(model, bits: int):
|
| 152 |
+
def quant(weight, bias=None):
|
| 153 |
+
if bits == 8:
|
| 154 |
+
linear = Linear8bitLtOnline(
|
| 155 |
+
weight,
|
| 156 |
+
bias,
|
| 157 |
+
has_fp16_weights=False,
|
| 158 |
+
threshold=6.0,
|
| 159 |
+
)
|
| 160 |
+
if bias is not None:
|
| 161 |
+
linear.bias = torch.nn.Parameter(bias)
|
| 162 |
+
elif bits == 4:
|
| 163 |
+
linear = Linear4bitOnline(
|
| 164 |
+
weight,
|
| 165 |
+
bias,
|
| 166 |
+
quant_type="nf4", #fp4/nf4
|
| 167 |
+
)
|
| 168 |
+
else:
|
| 169 |
+
raise ValueError("quantize only support 4/8 bit")
|
| 170 |
+
return linear
|
| 171 |
+
|
| 172 |
+
for i, layer in enumerate(model.model.layers):
|
| 173 |
+
layer.self_attn.W_pack = quant(layer.self_attn.W_pack.weight)
|
| 174 |
+
layer.self_attn.o_proj = quant(layer.self_attn.o_proj.weight)
|
| 175 |
+
layer.mlp.gate_proj = quant(layer.mlp.gate_proj.weight)
|
| 176 |
+
layer.mlp.down_proj = quant(layer.mlp.down_proj.weight)
|
| 177 |
+
layer.mlp.up_proj = quant(layer.mlp.up_proj.weight)
|
| 178 |
+
return model
|
| 179 |
+
|
| 180 |
+
def init_model_weight_int4(config, model, state_dict):
|
| 181 |
+
#replace Params4bit.cuda with Params4bitCuda
|
| 182 |
+
Params4bit.cuda = Params4bitCuda
|
| 183 |
+
|
| 184 |
+
for i in range(config.num_hidden_layers):
|
| 185 |
+
weight_data = state_dict[f'model.layers.{i}.self_attn.W_pack.weight.data']
|
| 186 |
+
weight_quant_state = state_dict[f'model.layers.{i}.self_attn.W_pack.weight.quant_state']
|
| 187 |
+
model.model.layers[i].self_attn.W_pack.weight = Params4bit(weight_data, requires_grad=False, quant_state=weight_quant_state)
|
| 188 |
+
|
| 189 |
+
weight_data = state_dict[f'model.layers.{i}.self_attn.o_proj.weight.data']
|
| 190 |
+
weight_quant_state = state_dict[f'model.layers.{i}.self_attn.o_proj.weight.quant_state']
|
| 191 |
+
model.model.layers[i].self_attn.o_proj.weight = Params4bit(weight_data, requires_grad=False, quant_state=weight_quant_state)
|
| 192 |
+
|
| 193 |
+
weight_data = state_dict[f'model.layers.{i}.mlp.gate_proj.weight.data']
|
| 194 |
+
weight_quant_state = state_dict[f'model.layers.{i}.mlp.gate_proj.weight.quant_state']
|
| 195 |
+
model.model.layers[i].mlp.gate_proj.weight = Params4bit(weight_data, requires_grad=False, quant_state=weight_quant_state)
|
| 196 |
+
|
| 197 |
+
weight_data = state_dict[f'model.layers.{i}.mlp.up_proj.weight.data']
|
| 198 |
+
weight_quant_state = state_dict[f'model.layers.{i}.mlp.up_proj.weight.quant_state']
|
| 199 |
+
model.model.layers[i].mlp.up_proj.weight = Params4bit(weight_data, requires_grad=False, quant_state=weight_quant_state)
|
| 200 |
+
|
| 201 |
+
weight_data = state_dict[f'model.layers.{i}.mlp.down_proj.weight.data']
|
| 202 |
+
weight_quant_state = state_dict[f'model.layers.{i}.mlp.down_proj.weight.quant_state']
|
| 203 |
+
model.model.layers[i].mlp.down_proj.weight = Params4bit(weight_data, requires_grad=False, quant_state=weight_quant_state)
|
| 204 |
+
|
| 205 |
+
model.model.layers[i].input_layernorm.weight = state_dict[f'model.layers.{i}.input_layernorm.weight']
|
| 206 |
+
model.model.layers[i].post_attention_layernorm.weight = state_dict[f'model.layers.{i}.post_attention_layernorm.weight']
|
| 207 |
+
|
| 208 |
+
model.model.embed_tokens.weight = state_dict['model.embed_tokens.weight']
|
| 209 |
+
model.model.norm.weight = state_dict['model.norm.weight']
|
| 210 |
+
model.lm_head.weight = state_dict['lm_head.weight']
|
| 211 |
+
return model
|