--- license: mit model_name: ALMA 13B Pretrain base_model: haoranxu/ALMA-13B-Pretrain inference: false model_creator: haoranxu model_type: llama prompt_template: 'Translate this from Chinese to English: Chinese: {prompt} English: ' quantized_by: TheBloke ---
TheBlokeAI

Chat & support: TheBloke's Discord server

Want to contribute? TheBloke's Patreon page

TheBloke's LLM work is generously supported by a grant from andreessen horowitz (a16z)


# ALMA 13B Pretrain - AWQ - Model creator: [haoranxu](https://huggingface.co/haoranxu) - Original model: [ALMA 13B Pretrain](https://huggingface.co/haoranxu/ALMA-13B-Pretrain) ## Description This repo contains AWQ model files for [haoranxu's ALMA 13B Pretrain](https://huggingface.co/haoranxu/ALMA-13B-Pretrain). ### About AWQ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference. It is also now supported by continuous batching server [vLLM](https://github.com/vllm-project/vllm), allowing use of AWQ models for high-throughput concurrent inference in multi-user server scenarios. Note that, at the time of writing, overall throughput is still lower than running vLLM with unquantised models, however using AWQ enables using much smaller GPUs which can lead to easier deployment and overall cost savings. For example, a 70B model can be run on 1 x 48GB GPU instead of 2 x 80GB. ## Repositories available * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/ALMA-13B-Pretrain-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/ALMA-13B-Pretrain-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/ALMA-13B-Pretrain-GGUF) * [haoranxu's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/haoranxu/ALMA-13B-Pretrain) ## Prompt template: ALMA ``` Translate this from Chinese to English: Chinese: {prompt} English: ``` ## Licensing The creator of the source model has listed its license as `mit`, and this quantization has therefore used that same license. As this model is based on Llama 2, it is also subject to the Meta Llama 2 license terms, and the license files for that are additionally included. It should therefore be considered as being claimed to be licensed under both licenses. I contacted Hugging Face for clarification on dual licensing but they do not yet have an official position. Should this change, or should Meta provide any feedback on this situation, I will update this section accordingly. In the meantime, any questions regarding licensing, and in particular how these two licenses might interact, should be directed to the original model repository: [haoranxu's ALMA 13B Pretrain](https://huggingface.co/haoranxu/ALMA-13B-Pretrain). ## Provided files and AWQ parameters For my first release of AWQ models, I am releasing 128g models only. I will consider adding 32g as well if there is interest, and once I have done perplexity and evaluation comparisons, but at this time 32g models are still not fully tested with AutoAWQ and vLLM. Models are released as sharded safetensors files. | Branch | Bits | GS | AWQ Dataset | Seq Len | Size | | ------ | ---- | -- | ----------- | ------- | ---- | | [main](https://huggingface.co/TheBloke/ALMA-13B-Pretrain-AWQ/tree/main) | 4 | 128 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.25 GB ## Serving this model from vLLM Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/). - When using vLLM as a server, pass the `--quantization awq` parameter, for example: ```shell python3 python -m vllm.entrypoints.api_server --model TheBloke/ALMA-13B-Pretrain-AWQ --quantization awq --dtype half ``` When using vLLM from Python code, pass the `quantization=awq` parameter, for example: ```python from vllm import LLM, SamplingParams prompts = [ "Hello, my name is", "The president of the United States is", "The capital of France is", "The future of AI is", ] sampling_params = SamplingParams(temperature=0.8, top_p=0.95) llm = LLM(model="TheBloke/ALMA-13B-Pretrain-AWQ", quantization="awq", dtype="half") outputs = llm.generate(prompts, sampling_params) # Print the outputs. for output in outputs: prompt = output.prompt generated_text = output.outputs[0].text print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") ``` ## How to use this AWQ model from Python code ### Install the necessary packages Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.0.2 or later ```shell pip3 install autoawq ``` If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead: ```shell pip3 uninstall -y autoawq git clone https://github.com/casper-hansen/AutoAWQ cd AutoAWQ pip3 install . ``` ### You can then try the following example code ```python from awq import AutoAWQForCausalLM from transformers import AutoTokenizer model_name_or_path = "TheBloke/ALMA-13B-Pretrain-AWQ" # Load model model = AutoAWQForCausalLM.from_quantized(model_name_or_path, fuse_layers=True, trust_remote_code=False, safetensors=True) tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=False) prompt = "Tell me about AI" prompt_template=f'''Translate this from Chinese to English: Chinese: {prompt} English: ''' print("\n\n*** Generate:") tokens = tokenizer( prompt_template, return_tensors='pt' ).input_ids.cuda() # Generate output generation_output = model.generate( tokens, do_sample=True, temperature=0.7, top_p=0.95, top_k=40, max_new_tokens=512 ) print("Output: ", tokenizer.decode(generation_output[0])) # Inference can also be done using transformers' pipeline from transformers import pipeline print("*** Pipeline:") pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512, do_sample=True, temperature=0.7, top_p=0.95, top_k=40, repetition_penalty=1.1 ) print(pipe(prompt_template)[0]['generated_text']) ``` ## Compatibility The files provided are tested to work with [AutoAWQ](https://github.com/casper-hansen/AutoAWQ), and [vLLM](https://github.com/vllm-project/vllm). [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is not yet compatible with AWQ, but a PR is open which should bring support soon: [TGI PR #781](https://github.com/huggingface/text-generation-inference/issues/781). ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute Thanks to the [chirper.ai](https://chirper.ai) team! Thanks to Clay from [gpus.llm-utils.org](llm-utils)! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. # Original model card: haoranxu's ALMA 13B Pretrain **ALMA** (**A**dvanced **L**anguage **M**odel-based tr**A**nslator) is an LLM-based translation model, which adopts a new translation model paradigm: it begins with fine-tuning on monolingual data and is further optimized using high-quality parallel data. This two-step fine-tuning process ensures strong translation performance. Please find more details in our [paper](https://arxiv.org/abs/2309.11674). ``` @misc{xu2023paradigm, title={A Paradigm Shift in Machine Translation: Boosting Translation Performance of Large Language Models}, author={Haoran Xu and Young Jin Kim and Amr Sharaf and Hany Hassan Awadalla}, year={2023}, eprint={2309.11674}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` We release four translation models presented in the paper: - **ALMA-7B**: Full-weight Fine-tune LLaMA-2-7B on 20B monolingual tokens and then **Full-weight** fine-tune on human-written parallel data - **ALMA-7B-LoRA**: Full-weight Fine-tune LLaMA-2-7B on 20B monolingual tokens and then **LoRA** fine-tune on human-written parallel data - **ALMA-13B**: Full-weight Fine-tune LLaMA-2-7B on 12B monolingual tokens and then **Full-weight** fine-tune on human-written parallel data - **ALMA-13B-LoRA** (Our best system): Full-weight Fine-tune LLaMA-2-7B on 12B monolingual tokens and then **LoRA** fine-tune on human-written parallel data Model checkpoints are released at huggingface: | Models | Base Model Link | LoRA Link | |:-------------:|:---------------:|:---------:| | ALMA-7B | [haoranxu/ALMA-7B](https://huggingface.co/haoranxu/ALMA-7B) | - | | ALMA-7B-LoRA | [haoranxu/ALMA-7B-Pretrain](https://huggingface.co/haoranxu/ALMA-7B-Pretrain) | [haoranxu/ALMA-7B-Pretrain-LoRA](https://huggingface.co/haoranxu/ALMA-7B-Pretrain-LoRA) | | ALMA-13B | [haoranxu/ALMA-13B](https://huggingface.co/haoranxu/ALMA-13B) | - | | ALMA-13B-LoRA | [haoranxu/ALMA-13B-Pretrain](https://huggingface.co/haoranxu/ALMA-13B-Pretrain) | [haoranxu/ALMA-13B-Pretrain-LoRA](https://huggingface.co/haoranxu/ALMA-13B-Pretrain-LoRA) | Note that Base Model Link for `*-LoRA` models are LLaMA-2 fine-tuned by monolingual data (20B for the 7B model and 12B for the 13B model) A quick start to use our best system (ALMA-13B-LoRA) for translation. An example of translating "我爱机器翻译。" into English: ``` import torch from peft import PeftModel from transformers import AutoModelForCausalLM from transformers import LlamaTokenizer # Load base model and LoRA weights model = AutoModelForCausalLM.from_pretrained("haoranxu/ALMA-13B-Pretrain", torch_dtype=torch.float16, device_map="auto") model = PeftModel.from_pretrained(model, "haoranxu/ALMA-13B-Pretrain-LoRA") tokenizer = LlamaTokenizer.from_pretrained("haoranxu/ALMA-13B-Pretrain", padding_side='left') # Add the source setence into the prompt template prompt="Translate this from Chinese to English:\nChinese: 我爱机器翻译。\nEnglish:" input_ids = tokenizer(prompt, return_tensors="pt", padding=True, max_length=40, truncation=True).input_ids.cuda() # Translation with torch.no_grad(): generated_ids = model.generate(input_ids=input_ids, num_beams=5, max_new_tokens=20, do_sample=True, temperature=0.6, top_p=0.9) outputs = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) print(outputs) ``` Please find more details in our [GitHub repository](https://github.com/fe1ixxu/ALMA)