--- library_name: transformers base_model: motheecreator/vit-Facial-Expression-Recognition tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: vit-Facial-Expression-Recognition results: [] --- # vit-Facial-Expression-Recognition This model is a fine-tuned version of [motheecreator/vit-Facial-Expression-Recognition](https://huggingface.co/motheecreator/vit-Facial-Expression-Recognition) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3658 - Accuracy: 0.8753 - F1: 0.8737 - Precision: 0.8749 - Recall: 0.8753 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 4.5618 | 0.2164 | 100 | 0.3710 | 0.8762 | 0.8746 | 0.8752 | 0.8762 | | 4.6091 | 0.4328 | 200 | 0.3677 | 0.8761 | 0.8747 | 0.8762 | 0.8761 | | 4.5423 | 0.6492 | 300 | 0.3695 | 0.8748 | 0.8730 | 0.8745 | 0.8748 | | 4.6307 | 0.8656 | 400 | 0.3745 | 0.8711 | 0.8692 | 0.8730 | 0.8711 | | 4.3953 | 1.0801 | 500 | 0.3745 | 0.8727 | 0.8711 | 0.8724 | 0.8727 | | 4.341 | 1.2965 | 600 | 0.3803 | 0.8688 | 0.8674 | 0.8688 | 0.8688 | | 4.5471 | 1.5128 | 700 | 0.3841 | 0.8713 | 0.8699 | 0.8710 | 0.8713 | | 4.522 | 1.7292 | 800 | 0.3836 | 0.8679 | 0.8662 | 0.8678 | 0.8679 | | 4.5596 | 1.9456 | 900 | 0.3885 | 0.8672 | 0.8649 | 0.8678 | 0.8672 | | 4.1491 | 2.1601 | 1000 | 0.3849 | 0.8691 | 0.8677 | 0.8689 | 0.8691 | | 4.1037 | 2.3765 | 1100 | 0.3906 | 0.8667 | 0.8647 | 0.8669 | 0.8667 | | 4.0033 | 2.5929 | 1200 | 0.3784 | 0.8704 | 0.8687 | 0.8699 | 0.8704 | | 3.9759 | 2.8093 | 1300 | 0.3677 | 0.8752 | 0.8737 | 0.8747 | 0.8752 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0