--- license: mit widget: - text: |- - как ты? - example_title: how r u language: - ru pipeline_tag: text2text-generation --- # Usage ```python import torch from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained('TeraSpace/dialofred') model = AutoModelForSeq2SeqLM.from_pretrained('TeraSpace/dialofred', device_map={'':0}).to(device)# Add torch_dtype=torch.bfloat16 to use less memory while True: text_inp = input("=>") lm_text=f'- {text_inp}\n- ' input_ids=torch.tensor([tokenizer.encode(lm_text)]).to(model.device) # outputs=model.generate(input_ids=input_ids, # max_length=200, # eos_token_id=tokenizer.eos_token_id, # early_stopping=True, # do_sample=True, # temperature=1.0, # top_k=0, # top_p=0.85) # outputs=model.generate(input_ids,eos_token_id=tokenizer.eos_token_id,early_stopping=True) outputs=model.generate(input_ids=input_ids, max_length=200, eos_token_id=tokenizer.eos_token_id, early_stopping=True, do_sample=True, temperature=0.7, top_k=0, top_p=0.8) print(tokenizer.decode(outputs[0][1:])) ```