Image Feature Extraction
English
image-to-image
RobertLuo1 nielsr HF staff commited on
Commit
6072305
·
verified ·
1 Parent(s): 2e2550f

Improve model card (#1)

Browse files

- Improve model card (84dfe08ac0e5822c86fc2e18ac52d55f29c33980)
- Add tag (80155f2628573247659e1c395dc24dd97a82f636)


Co-authored-by: Niels Rogge <[email protected]>

Files changed (1) hide show
  1. README.md +13 -1
README.md CHANGED
@@ -2,10 +2,18 @@
2
  license: apache-2.0
3
  language:
4
  - en
 
 
 
5
  ---
 
6
  ## Open-MAGVIT2: Democratizing Autoregressive Visual Generation
7
 
8
- [[Project Page]](https://github.com/TencentARC/Open-MAGVIT2)
 
 
 
 
9
 
10
  Until now, VQGAN, the initial tokenizer is still acting an indispensible role in mainstream tasks, especially autoregressive visual generation. Limited by the bottleneck of the size of codebook and the utilization of code, the capability of AR generation with VQGAN is underestimated.
11
 
@@ -18,3 +26,7 @@ ImageNet 128 × 128:
18
 
19
  ImageNet 256 × 256:
20
  - Model [ImageNet_256_Base.ckpt](https://huggingface.co/TencentARC/Open-MAGVIT2/blob/main/imagenet_256_B.ckpt)
 
 
 
 
 
2
  license: apache-2.0
3
  language:
4
  - en
5
+ pipeline_tag: image-feature-extraction
6
+ tags:
7
+ - image-to-image
8
  ---
9
+
10
  ## Open-MAGVIT2: Democratizing Autoregressive Visual Generation
11
 
12
+ Code: https://github.com/TencentARC/Open-MAGVIT2
13
+
14
+ Paper: https://huggingface.co/papers/2409.04410
15
+
16
+ ## Introduction
17
 
18
  Until now, VQGAN, the initial tokenizer is still acting an indispensible role in mainstream tasks, especially autoregressive visual generation. Limited by the bottleneck of the size of codebook and the utilization of code, the capability of AR generation with VQGAN is underestimated.
19
 
 
26
 
27
  ImageNet 256 × 256:
28
  - Model [ImageNet_256_Base.ckpt](https://huggingface.co/TencentARC/Open-MAGVIT2/blob/main/imagenet_256_B.ckpt)
29
+
30
+ ## Usage
31
+
32
+ Refer to the Github repository which includes [scripts](https://github.com/TencentARC/Open-MAGVIT2/tree/main/scripts) for training, evaluation and inference.