--- license: apache-2.0 base_model: mistralai/Mistral-7B-Instruct-v0.2 tags: - alignment_handbook-handbook - generated_from_trainer datasets: - princeton-nlp/mistral-instruct-ultrafeedback model-index: - name: Mistral-7B-Instruct-v0.2-MI-2e-5 results: [] --- [Visualize in Weights & Biases](https://wandb.ai/tengxiao01/huggingface/runs/a5eg2ijs) # Mistral-7B-Instruct-v0.2-MI-2e-5 This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on the princeton-nlp/mistral-instruct-ultrafeedback dataset. It achieves the following results on the evaluation set: - Loss: 1.5846 - Rewards/chosen: -0.8695 - Rewards/rejected: -0.9117 - Rewards/accuracies: 0.5559 - Rewards/margins: 0.0422 - Logps/rejected: -0.9117 - Logps/chosen: -0.8695 - Logits/rejected: -2.8388 - Logits/chosen: -2.8404 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 1.5218 | 0.8573 | 400 | 1.5846 | -0.8695 | -0.9117 | 0.5559 | 0.0422 | -0.9117 | -0.8695 | -2.8388 | -2.8404 | ### Framework versions - Transformers 4.42.0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.19.1