--- license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - alignment_handbook-handbook - generated_from_trainer datasets: - princeton-nlp/llama3-ultrafeedback-armorm model-index: - name: Meta-Llama-3-8B-Instruct-MI-1e-6 results: [] --- [Visualize in Weights & Biases](https://wandb.ai/tengxiao01/huggingface/runs/ni3qqrpu) # Meta-Llama-3-8B-Instruct-MI-1e-6 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the princeton-nlp/llama3-ultrafeedback-armorm dataset. It achieves the following results on the evaluation set: - Loss: 1.1743 - Rewards/chosen: -0.4630 - Rewards/rejected: -0.6776 - Rewards/accuracies: 0.7683 - Rewards/margins: 0.2146 - Logps/rejected: -0.6776 - Logps/chosen: -0.4630 - Logits/rejected: 0.0554 - Logits/chosen: 0.0781 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 1.1796 | 0.8550 | 400 | 1.1743 | -0.4630 | -0.6776 | 0.7683 | 0.2146 | -0.6776 | -0.4630 | 0.0554 | 0.0781 | ### Framework versions - Transformers 4.42.0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.19.1