TRiddle commited on
Commit
4b9161a
·
1 Parent(s): aedab87

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1089.85 +/- 250.25
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d3b3f827a5f28b72d5e3377056ecdca17d0965b53ecf0c8d93de727bf74c1b4
3
+ size 129265
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f37887d88b0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f37887d8940>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f37887d89d0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f37887d8a60>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f37887d8af0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f37887d8b80>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f37887d8c10>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f37887d8ca0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f37887d8d30>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f37887d8dc0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f37887d8e50>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f37887d8ee0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f37887dd380>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1678638205093670135,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAHi1M77yuXm/GB3kPQNLHD+haALAaxkrPvS/AT6mdDe/zYpAwDD9Ir+H5GA/KrvJPnrWjb0z9qC/2UNEP4pr6D9NZfu+m0H0v1TgMT+Lghc+e5VLP/StuD/5n0+/nXItPExwQD91LMo+pnEOP5A6rb+CT1c/yhgyv5Iomj4Y7o8/VswIvq0wPb98HDI/c4g/v/OFDcCMzZy/3jKSPzjUF0AaS4I+j1PnvwIohL7bVJm/Zg1vPz5AI7872ZE+RuPWvzxy4776R4Q/Z/FPv1kykDwSR6q/dSzKPqZxDj+QOq2//AR2P/W06L73ANQ+3U2GPeCUpz+LwwdA70e5PwrfHL/o1Rc/++sEwO8LK0ClcXA9NCvOviS6rz/7sMa/j+mtv1P7iz7lsmC8PTNOPw1ec7/sbRQ+Xohlv0rJZD1pkzU+THBAP3Usyj6mcQ4/kDqtv+zmdD/AYoW/wTRkPcDHEkC0/EtAFCm8vvJEsT9IwaC+XdsOwPwCrL/soKa+e6y8PbS/bz+f+Nc/sDyhvzUuiz9zGq4/pspMvaXMMD+C6cK/IKpXv46dJT3Z0IC+SJD7vhJHqr91LMo+lgrmvwgpPT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAATDF+0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA7MbsvQAAAABgvPO/AAAAAKSH570AAAAAgyzZPwAAAADWoDW9AAAAAMTu9z8AAAAAnnO7vAAAAACks+m/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArnLBtAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJzLBb4AAAAAM/n6vwAAAAD8yge+AAAAANq42z8AAAAAyevzvAAAAACxtOI/AAAAAB/VPbsAAAAAUxvmvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKGgQDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDCTOm9AAAAAF8g5L8AAAAAzeVuPAAAAAA9c+s/AAAAAON1pLwAAAAAMd3YPwAAAACs0l+8AAAAAAZA3L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABSquwyAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAblYsvAAAAADyYwDAAAAAAKQcXz0AAAAAni/fPwAAAAAcbry9AAAAAPtc/j8AAAAAVcT6vAAAAACU+Nq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHRhXv+fh/CMAWyUTegDjAF0lEdAq9bexQizLXV9lChoBkdAgDGbtRekYWgHTegDaAhHQKvZjr8BMi91fZQoaAZHQH3SRgqmTDBoB03oA2gIR0Cr2dkm6XjVdX2UKGgGR0CXt60cfeUIaAdN6ANoCEdAq+JRqM3qA3V9lChoBkdAl0bmtlqagGgHTegDaAhHQKvkmK77Kq51fZQoaAZHQJkTm1gH/tJoB03oA2gIR0Cr6OJ97WupdX2UKGgGR0B2J94/u9eyaAdN6ANoCEdAq+lUs189fXV9lChoBkdAmnDuSntOVWgHTegDaAhHQKvyeLSeAd51fZQoaAZHQHTg7xRVIZtoB03oA2gIR0Cr8+/bKzRhdX2UKGgGR0CXpaXDm8ujaAdN6ANoCEdAq/amz8gp0HV9lChoBkdAmY/kmY0EYGgHTegDaAhHQKv26biIcip1fZQoaAZHQJgK/akAPupoB03oA2gIR0Cr/tZ1vES/dX2UKGgGR0CZXhU0Nz8xaAdN6ANoCEdArAClHtnf23V9lChoBkdAe8qCMPz4DmgHTegDaAhHQKwEqCtA9mp1fZQoaAZHQJxSsZR8+idoB03oA2gIR0CsBRcYQ8OkdX2UKGgGR0CTaV6LOzIFaAdN6ANoCEdArA9fx+az/3V9lChoBkdAlf6p4B3iaWgHTegDaAhHQKwQ3JEpiJB1fZQoaAZHQJc5ltJnQIFoB03oA2gIR0CsE2nTy8SPdX2UKGgGR0CYM6EXLvCuaAdN6ANoCEdArBOsf/3nIXV9lChoBkdAmyuoT4+KTGgHTegDaAhHQKwbaLqD9O11fZQoaAZHQJO0yi0v4/NoB03oA2gIR0CsHNlvZRKpdX2UKGgGR0CSHIytFKChaAdN6ANoCEdArB+MUXYUWXV9lChoBkdAlx9C8jAzpGgHTegDaAhHQKwf7LpRoAZ1fZQoaAZHQJOAS7I1cdJoB03oA2gIR0CsK8Z1vES/dX2UKGgGR0CQCcCUornUaAdN6ANoCEdArC1L2WY4Q3V9lChoBkdAk2r/HT7VKGgHTegDaAhHQKwwAu3+dbx1fZQoaAZHQJXGsEU0vXdoB03oA2gIR0CsMEcwHqu9dX2UKGgGR0CWNkd92HLzaAdN6ANoCEdArDgACZF5OnV9lChoBkdAlmzHCbc452gHTegDaAhHQKw5k+2VmjF1fZQoaAZHQGP/T7di2DxoB03oA2gIR0CsPW99Dx9YdX2UKGgGR0CT2yCaJAMVaAdN6ANoCEdArD3QrpaA4HV9lChoBkdAX4oBjnV5KWgHTegDaAhHQKxLeR3eN1h1fZQoaAZHQJWOLiMo+fRoB03oA2gIR0CsTfKmj0tidX2UKGgGR0CKmGF9roGIaAdN6ANoCEdArFCn2/SH/XV9lChoBkdAkdE1Id2gWmgHTegDaAhHQKxQ7dznzQN1fZQoaAZHQGPlVoHs1KpoB03oA2gIR0CsWMNC7btadX2UKGgGR0CI0A0Xxe9jaAdN6ANoCEdArFo7tsvZiHV9lChoBkdAlyF3gLqlg2gHTegDaAhHQKxc3k92X9l1fZQoaAZHQJCNIewLVnVoB03oA2gIR0CsXSI2fkFOdX2UKGgGR0CN9C7Wd3B6aAdN6ANoCEdArGZHjABT43V9lChoBkdAlIepO32EkGgHTegDaAhHQKxo3E74i5d1fZQoaAZHQJZFxtFa0QdoB03oA2gIR0CsbUalchTwdX2UKGgGR0CUrQqEeyRkaAdN6ANoCEdArG2/E4vN/3V9lChoBkdAkOnJO8Cgb2gHTegDaAhHQKx1f2wmmch1fZQoaAZHQJUwErPMSsdoB03oA2gIR0CsdvWVE/jbdX2UKGgGR0CRC8wvQF9saAdN6ANoCEdArHlxYkmhNHV9lChoBkdAkpC0JrtVrGgHTegDaAhHQKx5s+BYmsx1fZQoaAZHQJfWEDTz/ZNoB03oA2gIR0CsgVt0eU6gdX2UKGgGR0CasKAymALBaAdN6ANoCEdArINEyLyc1HV9lChoBkdAlfaIvalDW2gHTegDaAhHQKyHKg/1QIl1fZQoaAZHQJcU+6y0KJFoB03oA2gIR0Csh5Fpfx+bdX2UKGgGR0CW+ww5eZ5SaAdN6ANoCEdArJFUynDR+nV9lChoBkdAmAJVnmJWNmgHTegDaAhHQKyS0MkyDZl1fZQoaAZHQJGdc8nuy/toB03oA2gIR0CslWHLA57xdX2UKGgGR0CVTsEqlP8AaAdN6ANoCEdArJWiG8EmpnV9lChoBkdAjMs7D2rXDmgHTegDaAhHQKydpM6BAfN1fZQoaAZHQJdbcJLM9r5oB03oA2gIR0Csnxf+S8radX2UKGgGR8A18pRXOnl5aAdNCQFoCEdArKDK2v0ROHV9lChoBkdAjJTGLLpzLmgHTegDaAhHQKyiHypaRp11fZQoaAZHQJGLGbAk9lpoB03oA2gIR0Cson0QCjk/dX2UKGgGR0CU6RPFvQ4TaAdN6ANoCEdArLA0hA4XGnV9lChoBkdAlLt3VoYek2gHTegDaAhHQKyy2pvP1L91fZQoaAZHQJZeHgpBomJoB03oA2gIR0CstEEZBLPEdX2UKGgGR0CVCPJgssg/aAdN6ANoCEdArLSvpMYdhnV9lChoBkdAkdLSQgcLjWgHTegDaAhHQKy/pYHPeHl1fZQoaAZHQIdfgNb1RLtoB03oA2gIR0Cswfwa72+PdX2UKGgGR0CVJITFVDKHaAdN6ANoCEdArMMwn6VMVXV9lChoBkdAji08IAwPAmgHTegDaAhHQKzDjiYsunN1fZQoaAZHQImtMEidJ8RoB03oA2gIR0Csz+dp7CzkdX2UKGgGR0CWTynBciW3aAdN6ANoCEdArNGvX/YJ3XV9lChoBkdAdcPJEH+qBGgHTegDaAhHQKzSj420iQl1fZQoaAZHQEjSbLlmvntoB03oA2gIR0Cs0tC0OVgQdX2UKGgGR0CXMw4axX4kaAdN6ANoCEdArNxCZtvXLHV9lChoBkdAl08de6ZpjGgHTegDaAhHQKzd+JD3M6l1fZQoaAZHQJMWFuxbB45oB03oA2gIR0Cs3s3okiUxdX2UKGgGR0CUAH0tRNypaAdN6ANoCEdArN8UfRu0kXV9lChoBkdAhTx+UQkHEGgHTegDaAhHQKzs72jfvWp1fZQoaAZHQIoDCUkfLcNoB03oA2gIR0Cs7rnFYMfBdX2UKGgGR0CGb6qqfe1saAdN6ANoCEdArO+amygPE3V9lChoBkdAkheupfhMrWgHTegDaAhHQKzv2k690zV1fZQoaAZHQJGihjI7vG9oB03oA2gIR0Cs+R2BSUC8dX2UKGgGR0CCS8g5imVJaAdN6ANoCEdArPrh79hqkHV9lChoBkdAld6skpqh12gHTegDaAhHQKz7wtdzGPx1fZQoaAZHQIX5hvBJqZdoB03oA2gIR0Cs/A+MIeHSdX2UKGgGR0CRXjDDCP6saAdN6ANoCEdArQkZLZi/f3V9lChoBkdAkeZzeXRgJGgHTegDaAhHQK0LCRHww0x1fZQoaAZHQJXUkw482aVoB03oA2gIR0CtC9efh/AkdX2UKGgGR0CQT3hxo7FLaAdN6ANoCEdArQwdC5VfeHV9lChoBkdAjqw5zPrv9mgHTegDaAhHQK0Vd3X7LuB1fZQoaAZHQJdL7vphWo5oB03oA2gIR0CtFywq7ROUdX2UKGgGR0CLhbQNTcZcaAdN6ANoCEdArRf7Axi5NHV9lChoBkdAmAaEY4yXU2gHTegDaAhHQK0YQcx0uDl1fZQoaAZHQJCHVGPPszFoB03oA2gIR0CtI7R0EHMVdX2UKGgGR0B5gtpBX0XhaAdN6ANoCEdArSdiL876pHV9lChoBkdAgey+so2GZmgHTegDaAhHQK0pMZXMhX91fZQoaAZHQIVlI8SwnploB03oA2gIR0CtKdgbp/wzdX2UKGgGR0CR30bo8p1BaAdN6ANoCEdArTYsDMeOn3V9lChoBkdAgD4VSn+AE2gHTegDaAhHQK035Y4hllN1fZQoaAZHQI08Nn003wVoB03oA2gIR0CtOL3Zf2K3dX2UKGgGR0COKfWnTAnEaAdN6ANoCEdArTj+gvlEJHVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd7d53c4a899deee3d2a179a049a4bfcbf12da28ef0f1b1e52bbcda58b912abb
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d75b259b18212d50af8ed831eec6b3ba169db1b82f1616e28fdddf5b5a23e987
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f37887d88b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f37887d8940>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f37887d89d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f37887d8a60>", "_build": "<function ActorCriticPolicy._build at 0x7f37887d8af0>", "forward": "<function ActorCriticPolicy.forward at 0x7f37887d8b80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f37887d8c10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f37887d8ca0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f37887d8d30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f37887d8dc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f37887d8e50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f37887d8ee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f37887dd380>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678638205093670135, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAHi1M77yuXm/GB3kPQNLHD+haALAaxkrPvS/AT6mdDe/zYpAwDD9Ir+H5GA/KrvJPnrWjb0z9qC/2UNEP4pr6D9NZfu+m0H0v1TgMT+Lghc+e5VLP/StuD/5n0+/nXItPExwQD91LMo+pnEOP5A6rb+CT1c/yhgyv5Iomj4Y7o8/VswIvq0wPb98HDI/c4g/v/OFDcCMzZy/3jKSPzjUF0AaS4I+j1PnvwIohL7bVJm/Zg1vPz5AI7872ZE+RuPWvzxy4776R4Q/Z/FPv1kykDwSR6q/dSzKPqZxDj+QOq2//AR2P/W06L73ANQ+3U2GPeCUpz+LwwdA70e5PwrfHL/o1Rc/++sEwO8LK0ClcXA9NCvOviS6rz/7sMa/j+mtv1P7iz7lsmC8PTNOPw1ec7/sbRQ+Xohlv0rJZD1pkzU+THBAP3Usyj6mcQ4/kDqtv+zmdD/AYoW/wTRkPcDHEkC0/EtAFCm8vvJEsT9IwaC+XdsOwPwCrL/soKa+e6y8PbS/bz+f+Nc/sDyhvzUuiz9zGq4/pspMvaXMMD+C6cK/IKpXv46dJT3Z0IC+SJD7vhJHqr91LMo+lgrmvwgpPT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAATDF+0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA7MbsvQAAAABgvPO/AAAAAKSH570AAAAAgyzZPwAAAADWoDW9AAAAAMTu9z8AAAAAnnO7vAAAAACks+m/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArnLBtAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJzLBb4AAAAAM/n6vwAAAAD8yge+AAAAANq42z8AAAAAyevzvAAAAACxtOI/AAAAAB/VPbsAAAAAUxvmvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKGgQDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDCTOm9AAAAAF8g5L8AAAAAzeVuPAAAAAA9c+s/AAAAAON1pLwAAAAAMd3YPwAAAACs0l+8AAAAAAZA3L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABSquwyAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAblYsvAAAAADyYwDAAAAAAKQcXz0AAAAAni/fPwAAAAAcbry9AAAAAPtc/j8AAAAAVcT6vAAAAACU+Nq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHRhXv+fh/CMAWyUTegDjAF0lEdAq9bexQizLXV9lChoBkdAgDGbtRekYWgHTegDaAhHQKvZjr8BMi91fZQoaAZHQH3SRgqmTDBoB03oA2gIR0Cr2dkm6XjVdX2UKGgGR0CXt60cfeUIaAdN6ANoCEdAq+JRqM3qA3V9lChoBkdAl0bmtlqagGgHTegDaAhHQKvkmK77Kq51fZQoaAZHQJkTm1gH/tJoB03oA2gIR0Cr6OJ97WupdX2UKGgGR0B2J94/u9eyaAdN6ANoCEdAq+lUs189fXV9lChoBkdAmnDuSntOVWgHTegDaAhHQKvyeLSeAd51fZQoaAZHQHTg7xRVIZtoB03oA2gIR0Cr8+/bKzRhdX2UKGgGR0CXpaXDm8ujaAdN6ANoCEdAq/amz8gp0HV9lChoBkdAmY/kmY0EYGgHTegDaAhHQKv26biIcip1fZQoaAZHQJgK/akAPupoB03oA2gIR0Cr/tZ1vES/dX2UKGgGR0CZXhU0Nz8xaAdN6ANoCEdArAClHtnf23V9lChoBkdAe8qCMPz4DmgHTegDaAhHQKwEqCtA9mp1fZQoaAZHQJxSsZR8+idoB03oA2gIR0CsBRcYQ8OkdX2UKGgGR0CTaV6LOzIFaAdN6ANoCEdArA9fx+az/3V9lChoBkdAlf6p4B3iaWgHTegDaAhHQKwQ3JEpiJB1fZQoaAZHQJc5ltJnQIFoB03oA2gIR0CsE2nTy8SPdX2UKGgGR0CYM6EXLvCuaAdN6ANoCEdArBOsf/3nIXV9lChoBkdAmyuoT4+KTGgHTegDaAhHQKwbaLqD9O11fZQoaAZHQJO0yi0v4/NoB03oA2gIR0CsHNlvZRKpdX2UKGgGR0CSHIytFKChaAdN6ANoCEdArB+MUXYUWXV9lChoBkdAlx9C8jAzpGgHTegDaAhHQKwf7LpRoAZ1fZQoaAZHQJOAS7I1cdJoB03oA2gIR0CsK8Z1vES/dX2UKGgGR0CQCcCUornUaAdN6ANoCEdArC1L2WY4Q3V9lChoBkdAk2r/HT7VKGgHTegDaAhHQKwwAu3+dbx1fZQoaAZHQJXGsEU0vXdoB03oA2gIR0CsMEcwHqu9dX2UKGgGR0CWNkd92HLzaAdN6ANoCEdArDgACZF5OnV9lChoBkdAlmzHCbc452gHTegDaAhHQKw5k+2VmjF1fZQoaAZHQGP/T7di2DxoB03oA2gIR0CsPW99Dx9YdX2UKGgGR0CT2yCaJAMVaAdN6ANoCEdArD3QrpaA4HV9lChoBkdAX4oBjnV5KWgHTegDaAhHQKxLeR3eN1h1fZQoaAZHQJWOLiMo+fRoB03oA2gIR0CsTfKmj0tidX2UKGgGR0CKmGF9roGIaAdN6ANoCEdArFCn2/SH/XV9lChoBkdAkdE1Id2gWmgHTegDaAhHQKxQ7dznzQN1fZQoaAZHQGPlVoHs1KpoB03oA2gIR0CsWMNC7btadX2UKGgGR0CI0A0Xxe9jaAdN6ANoCEdArFo7tsvZiHV9lChoBkdAlyF3gLqlg2gHTegDaAhHQKxc3k92X9l1fZQoaAZHQJCNIewLVnVoB03oA2gIR0CsXSI2fkFOdX2UKGgGR0CN9C7Wd3B6aAdN6ANoCEdArGZHjABT43V9lChoBkdAlIepO32EkGgHTegDaAhHQKxo3E74i5d1fZQoaAZHQJZFxtFa0QdoB03oA2gIR0CsbUalchTwdX2UKGgGR0CUrQqEeyRkaAdN6ANoCEdArG2/E4vN/3V9lChoBkdAkOnJO8Cgb2gHTegDaAhHQKx1f2wmmch1fZQoaAZHQJUwErPMSsdoB03oA2gIR0CsdvWVE/jbdX2UKGgGR0CRC8wvQF9saAdN6ANoCEdArHlxYkmhNHV9lChoBkdAkpC0JrtVrGgHTegDaAhHQKx5s+BYmsx1fZQoaAZHQJfWEDTz/ZNoB03oA2gIR0CsgVt0eU6gdX2UKGgGR0CasKAymALBaAdN6ANoCEdArINEyLyc1HV9lChoBkdAlfaIvalDW2gHTegDaAhHQKyHKg/1QIl1fZQoaAZHQJcU+6y0KJFoB03oA2gIR0Csh5Fpfx+bdX2UKGgGR0CW+ww5eZ5SaAdN6ANoCEdArJFUynDR+nV9lChoBkdAmAJVnmJWNmgHTegDaAhHQKyS0MkyDZl1fZQoaAZHQJGdc8nuy/toB03oA2gIR0CslWHLA57xdX2UKGgGR0CVTsEqlP8AaAdN6ANoCEdArJWiG8EmpnV9lChoBkdAjMs7D2rXDmgHTegDaAhHQKydpM6BAfN1fZQoaAZHQJdbcJLM9r5oB03oA2gIR0Csnxf+S8radX2UKGgGR8A18pRXOnl5aAdNCQFoCEdArKDK2v0ROHV9lChoBkdAjJTGLLpzLmgHTegDaAhHQKyiHypaRp11fZQoaAZHQJGLGbAk9lpoB03oA2gIR0Cson0QCjk/dX2UKGgGR0CU6RPFvQ4TaAdN6ANoCEdArLA0hA4XGnV9lChoBkdAlLt3VoYek2gHTegDaAhHQKyy2pvP1L91fZQoaAZHQJZeHgpBomJoB03oA2gIR0CstEEZBLPEdX2UKGgGR0CVCPJgssg/aAdN6ANoCEdArLSvpMYdhnV9lChoBkdAkdLSQgcLjWgHTegDaAhHQKy/pYHPeHl1fZQoaAZHQIdfgNb1RLtoB03oA2gIR0Cswfwa72+PdX2UKGgGR0CVJITFVDKHaAdN6ANoCEdArMMwn6VMVXV9lChoBkdAji08IAwPAmgHTegDaAhHQKzDjiYsunN1fZQoaAZHQImtMEidJ8RoB03oA2gIR0Csz+dp7CzkdX2UKGgGR0CWTynBciW3aAdN6ANoCEdArNGvX/YJ3XV9lChoBkdAdcPJEH+qBGgHTegDaAhHQKzSj420iQl1fZQoaAZHQEjSbLlmvntoB03oA2gIR0Cs0tC0OVgQdX2UKGgGR0CXMw4axX4kaAdN6ANoCEdArNxCZtvXLHV9lChoBkdAl08de6ZpjGgHTegDaAhHQKzd+JD3M6l1fZQoaAZHQJMWFuxbB45oB03oA2gIR0Cs3s3okiUxdX2UKGgGR0CUAH0tRNypaAdN6ANoCEdArN8UfRu0kXV9lChoBkdAhTx+UQkHEGgHTegDaAhHQKzs72jfvWp1fZQoaAZHQIoDCUkfLcNoB03oA2gIR0Cs7rnFYMfBdX2UKGgGR0CGb6qqfe1saAdN6ANoCEdArO+amygPE3V9lChoBkdAkheupfhMrWgHTegDaAhHQKzv2k690zV1fZQoaAZHQJGihjI7vG9oB03oA2gIR0Cs+R2BSUC8dX2UKGgGR0CCS8g5imVJaAdN6ANoCEdArPrh79hqkHV9lChoBkdAld6skpqh12gHTegDaAhHQKz7wtdzGPx1fZQoaAZHQIX5hvBJqZdoB03oA2gIR0Cs/A+MIeHSdX2UKGgGR0CRXjDDCP6saAdN6ANoCEdArQkZLZi/f3V9lChoBkdAkeZzeXRgJGgHTegDaAhHQK0LCRHww0x1fZQoaAZHQJXUkw482aVoB03oA2gIR0CtC9efh/AkdX2UKGgGR0CQT3hxo7FLaAdN6ANoCEdArQwdC5VfeHV9lChoBkdAjqw5zPrv9mgHTegDaAhHQK0Vd3X7LuB1fZQoaAZHQJdL7vphWo5oB03oA2gIR0CtFywq7ROUdX2UKGgGR0CLhbQNTcZcaAdN6ANoCEdArRf7Axi5NHV9lChoBkdAmAaEY4yXU2gHTegDaAhHQK0YQcx0uDl1fZQoaAZHQJCHVGPPszFoB03oA2gIR0CtI7R0EHMVdX2UKGgGR0B5gtpBX0XhaAdN6ANoCEdArSdiL876pHV9lChoBkdAgey+so2GZmgHTegDaAhHQK0pMZXMhX91fZQoaAZHQIVlI8SwnploB03oA2gIR0CtKdgbp/wzdX2UKGgGR0CR30bo8p1BaAdN6ANoCEdArTYsDMeOn3V9lChoBkdAgD4VSn+AE2gHTegDaAhHQK035Y4hllN1fZQoaAZHQI08Nn003wVoB03oA2gIR0CtOL3Zf2K3dX2UKGgGR0COKfWnTAnEaAdN6ANoCEdArTj+gvlEJHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f8a00867d4493682d245c14418e5a4c6efaa346c2326064041b6c8780196367
3
+ size 1116952
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1089.8530693354594, "std_reward": 250.25105162975768, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-12T17:27:24.548719"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a91bf3e1a280ea04f39ddcd86bcc106ca6c8a355bdd0f8e85520e3bacc24b0e
3
+ size 2136