--- library_name: setfit tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer base_model: firqaaa/indo-sentence-bert-base metrics: - accuracy - precision - recall - f1 widget: - text: halaman 97 - 128 tidak ada , diulang halaman 65 - 96 , pembelian hari minggu tanggal 24 desember sore sekitar jam 4 pembayaran menggunakan kartu atm bri bersamaan dengan buku the puppeteer dan sirkus pohon - text: liverpool sukses di kandang tottenham - text: hai angga , untuk penerbitan tiket reschedule diharuskan melakukan pembayaran dulu ya . - text: sedih kalau umat diprovokasi supaya saling membenci . - text: berada di lokasi strategis jalan merdeka , berseberangan agak ke samping bandung indah plaza , tapat sebelah kanan jalan sebelum traffic light , parkir mobil cukup luas . saus bumbu dan lain-lain disediakan cukup lengkap di lantai bawah . di lantai atas suasana agak sepi . bakso cukup enak dan terjangkau harga nya tetapi kuah relatif kurang dan porsi tidak terlalu besar pipeline_tag: text-classification inference: true model-index: - name: SetFit with firqaaa/indo-sentence-bert-base results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.7171717171717171 name: Accuracy - type: precision value: 0.7171717171717171 name: Precision - type: recall value: 0.7171717171717171 name: Recall - type: f1 value: 0.7171717171717171 name: F1 --- # SetFit with firqaaa/indo-sentence-bert-base for indonlu/smsa dataset ## Author **Kelompok 3 :** - Muhammad Guntur Arfianto (20/459272/PA/19933) - Putri Iqlima Miftahuddini (23/531392/NUGM/01467) - Alan Kurniawan (23/531301/NUGM/01382) This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [firqaaa/indo-sentence-bert-base](https://huggingface.co/firqaaa/indo-sentence-bert-base) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. The dataset that was used for fine-tuning this model is [indonlu](https://huggingface.co/datasets/indonlp/indonlu), specifically its subset, SmSa dataset. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [firqaaa/indo-sentence-bert-base](https://huggingface.co/firqaaa/indo-sentence-bert-base) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 3 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 2 |